Системная плата MSI P35 Diamond - модель высшего класса на платформе Intel P35, которая содержит не только новейшую аппаратную часть, но и обладает потенциалом для разгона. Каждый знает, что BIOS - это душа системной платы, которая определяет ее функциональность и производительность.

Ниже представлено меню насторойки BIOS системной платы P35 Diamond. Все функции, связанные с производительностью, за исключением периферийных устройств, системного времени, управления питанием, находятся в разделе"Cell Menu". Желающие настроить частоту процессора, памяти или других устройств (например, шины графической карты и Южного Моста) могут воспользоваться этим меню.

Внимание: Эффективность разгона зависит от окружающих условий, поэтому мы не можем гарантировать работоспособность приведенныж далее настроек на каждой системной плате.

Помните, если вы не знакомы с настройкой BIOS, рекомендуется использовать пункт "Load Optimized Defaults" (загрузить оптимальные настройки), чтобы быстро завершить настройку, и обеспечить правильную работу системы. Перед разгоном мы рекомендуем пользователям вначале загрузить систему с "Load Optimized Defaults", и только затем выполнять тонкую настройку.

Раздел Cell Menu системной платы P35 Diamond

Все настройки, касающиеся разгона, находятся в разделе "Cell Menu". В них входят:

    D.O.T. control (управление технологией динамического разгона)

    Intel EIST (усовершенствованная технология Intel SpeedStep®)

    Adjust CPU FSB Frequency (настройка частоты CPU FSB)

    CPU Ratio CMOS Setting (установка множителя частоты процессора)

    Advanced DRAM Configuration (специальные настройки динамической памяти)

    FSB/Memory Ratio (соотношение частот FSB и памяти)

    PCIEx4 Speed Controller (управление скоростью PCIEx4)

    Adjust PCIE Frequency (частота шины PCIE)

    Auto Disable DIMM/PCI Frequency (автоматическое отключение тактовой частоты DIMM/PCI)

    CPU Voltage (напряжение питания CPU)

    Memory Voltage (напряжение питания памяти)

    VTT FSB Voltage (напряжение питания VTT FSB)

    NB Voltage (напряжение питания Северного Моста)

    SB I/O Power (питание ввода/вывода Южного Моста)

    SB Core Power (питание ядра Южного Моста)

    Spread Spectrum (ограничение спектра тактовой частоты)

Пользовательский интерфейс раздела "Cell Menu" очень прост и объединяет в группы сходные функции; пользователи могут сопоставлять сходные функции и выполнять настройки шаг за шагом.

Перед началом разгона установите функции "D.O.T. Control" и "Intel EIST" в состояние Disabled (выключено) (по умолчанию - включено). Эти функции следует отключить для того, чтобы можно было задать пользовательские значения напряжения питания процессора и системной шины. После выполнения этих настроек появится опция "CPU Ratio CMOS Setting (установка множителя частоты процессора)".

    Adjust CPU FSB Frequency (настройка часторы CPU FSB):
    После загрузки оптимизированных настроек эта функция автоматически определит и покажет частоту CPU. Например, для процессора Intel Core 2 Duo E6850, здесь будет показано значение "333 (MHz)". Настройка частоты может выполняться цифровыми клавишами или клавишами "Page Up" и "Page Down". В процессе настройки величина, показанная серым шрифтом "Adjusted CPU Frequency" (установленное значение частоты CPU), будет изменяться в соответствии с установленной частотой.


    CPU Ratio CMOS Setting (установка множителя частоты процессора) :
    В зависимости от номинальной частоты используемого процессора, например, 1333MHz, 1066MHz и 800MHz, диапазон множителей будет разным. Обычно частота понижена до минимума, что повышает стабильность работы и обеспечивает успех разгона.


    Advanced DRAM Configuration (специальные настройки DRAM) :
    Этот пункт предназначен для настройки задержек в рабочем цикле памяти. Чем меньше соответствующее значение, тем выше скорость. Однако предел зависит от качества используемых модулей памяти.

    Совет :
    Если вы используете обычные разгоняемые модули памяти, имеющиеся в продаже, мы рекомендуем последовательно выбрать пункты Cell Menu> Advanced DRAM Configuration (специальная конфигурация DRAM)> Configure DRAM Timing by SPD (конфигурация задержек DRAM через SPD), установить последний в состояние Disable (отключено). Далее появятся 9 дополнительных пунктов, которые предоставят возможность пользователям достичь лучшей производительности памяти.

    FSB/Memory Ratio (соотношение частот FSB и памяти) :
    Эта настройка определяет связь между частотами FSB и памяти. Если она установлена в состояние "Auto", частота памяти будет равна частоте FSB процессора. Если она задается пользователем, следуйте правилу 1:1.25. Например, процессор 1333MHz с памятью DDR2-800, далее 1333MHz / 4 x 1.25 x 2 = 833MHz. Частота памяти DDR2 составит 833MHz.


    Совет :
    Идя навстречу пожеланиям энтузиастов разгона, компания MSI создала в "Cell Menu" особый режим "Power User mode" (пользовательский режим питания). Просто нажмите "F4", и покажется скрытое меню. Пункты меню "Power User mode" ориентированы на настройку памяти и включают в себя величины SCOMP и ODT.



    Adjust PCIE Frequency (настройка частоты PCIE) :
    Обычно частота шины PCI Express не имеет прямой связи с разгоном; тем не менее ее тонкая настройка также поможет разгону. (Установка по умолчанию составляет 100, ее не рекомендуется увеличивать свыше 120, это может повредить графическую карту.)

    CPU Voltage (напряжение питания CPU) :
    Этот пункт является критическим для разгона, однако из-за сложности взаимосвязей отыскать наилучшую настройку непросто. Мы рекомендуем пользователям настраивать эту величину с осторожностью, поскольку неправильная установка может вывести процессор из строя. В соответствии в нашим опытом при наличии хорошего вентилятора, нет необходимости устанавливать предельное значение напряжения питания CPU. Например, для процессора Intel Core 2 Duo E6850 рекомендуется устанавливать напряжение в диапазоне 1.45~1.5V.

    Совет :
    Системная плата P35 Diamond использует модули памяти DDR3. В соответствии с определением DDR3 данным JEDEC, диапазон ее частот находится в пределах 800 и 1600MHz. Стандартными являются значения 800, 1066, 1333 и 1600MHz. Поэтому, при установке некотроых специальных модулей DDR3, мы рекомендуем вам установить минимальное отношение частот FSB/память, и для достижения успеха выполнить тонкую настройку напряжения питания памяти.

    VTT FSB Voltage (напряжение VTT FSB) :
    Чтобы обеспечить близкие напряжения питания всем основным устройствам напряжение VTT FSB также должно быть повышено. Повышение не должно быть большим, чтобы не вызвать отрицательного эффекта.

    NB Voltage (напряжение питания Северного Моста) :
    Северный мост играет определяющую роль в разгоне, поскольку он важен для сохранения стабильности работы процессора, памяти и графической карты. Это достигается посредством увеличения напряжения его питания. Мы рекомендуем пользователям выполнить тонкую настройку этого параметра.

    SB I/O Power (питание ввода/вывода Южного Моста) :
    Южный мост управляет подключением периферийных устройств и карт расширения, которые последнее время играют все более важную роль на платформе Intel. Стандартное напряжение питания ICH9R составляет 1.5V, что определяет настройку напряжения для устройств ввода/вывода. Мы рекомендуем повысить напряжение до 1.7~1.8V, что повысит стабильность совместной работы Северного и Южного Мостов, а также поможет разгону.

    SB Core Power (питание ядра Южного Моста) :
    Раньше при разгоне Южный Мост игнорировался, однако при повышении напряжения питания он увеличивает производительность.

Кроме того, помните, MSI в настройках напряжения питания выделяет разными цветами разные их значения: серый соответствует стандартному, белый означает безопасное значение, опасное выделяется красным.

Советы :
MSI предупреждает вас: чаще проверяйте скорость вращения вентилятора и температуру. Хорошее охлаждение играет при разгоне определяющую роль.

Внимание :
P35 Diamond - мощная системная плата, предоставляющая для разгона полный набор функций и обеспечивающая защиту системы. При трех неудачных разгонах подряд система автоматически установит стандартные настройки BIOS для надежной загрузки системы. Перед разгоном убедитесь в том, что каждый из компонентов способен выдержать его режим. Компания MSI не несет ответственности за любые повреждения, связанные с неудачным разгоном. Данная статья предназначена только для ознакомленияя.

Когда все параметры уставновлены, мы рекомендуем сохранить их с помощью функции "User Settings" (пользовательские настройки) в меню BIOS, которая облегчает загрузку настроек, а также позволяет установить стандартные настройки при неудачном разгоне. Пользователь может сохранить два набора настроек и выбирать требуемый.

В разделе User Settings (пользовательские настройки) "Press Enter" (Нажмите Ввод), чтобы сохранить параметры BIOS.

При неудачном разгоне, у пользователей остается возможность войти в раздел User Setting (пользовательские настройки) для установки более подходящих параметров, чтобы восстановить нормальную работу.

Как разогнать системную плату P35 Diamond

Раньше, чем ожидалось, платформа Intel вступила в эру памяти DDR3. Память DDR3 обладает более низким рабочим напряжением, тепловыделением и более высокой тактовой частотой. Она обладет лучшей эффективностью разгона, чем DDR2. Тем не менее, чипсет и модули памяти по-прежнему не имеют окружения, соответствующего разгону, и это ограничивает потенциал DDR3.

Системная плата MSI P35 Diamond от MSI поставляется с памятью DDR3 и внешне очень похожа на P35 Platinum. Она обладает большим потенциалам, чем предшественица. Системная плата P35 Diamond может поддерживать многоядерные процессоры Intel 1333MHz и использовать модули памяти 1066MHz DDR3, обладающие выдающейся производительностью ().

При разгоне P35 Diamond имеет столь же превосходную производительность, что и P35 Platinum, но обладает некоторыми отличиями. Благодаря памяти DDR3, пользователи имеют возможность тонкой настройки некоторых компонентов, например, напряжения питания и соотношения частот, что повлияет на результаты разгона. В завершение мы подробнее остановимся на тонкостях, которые следует иметь в виду, приступая к разгону.

Советы :
При разгоне повышается напряжение питания основных устройств, и они выделяют больше тепла, чем обычно. Поэтому охлаждение становится при разгоне важной проблемой.

Внимание:
OC - это программная среда, с которой любой пользователь компьютера соприкасается каждый день. Стабильность ОС определяет работоспособность системы. Мы рекомендуем пользователям установить стандартные настройки во время установки ОС и не включать никаких разгонных или оптимизирующих функций.

Вместе с системной платой P35 Diamond мы использовали процессор Intel Core 2 Duo E6850. Модули памяти предоставлены компанией Corsair CM3X1024-1066C7 DDR3-1066, графическая карта Nvidia GeForce 8600GTS, жесткий диск Western Digital WD740ADFD.

Модули памяти Corsair CM3X1024-1066C7 DDR3-1066/7-7-7-21/1024MB/1.5V

Память DDR3 обладает более низким рабочим напряжением, выделением тепла и большей тактовой частотой, что обеспечивает лучшую эффективность разгона. При установке модулей памяти важна настройка напряжения питания.

Стандартная настройка BIOS:

Вид окна программы определения параметров системы (CPU-Z 1.40):

Следующми шагом мы входим в раздел "Cell Menu" в BIOS. Далее мы устанавливаем частоту 450MHz, множитель частоты 8, что гарантирует стабильность. Согласно спецификации чипсета P35, при повышении частоты CPU изменяется также частота памяти. Поэтому, для достижения стабильности мы изменяем соотношение частот FSB/памяти на 1:1.

На следующем изображении показаны измеренные нами рабочие параметры (зависят от окружающих условий)

По окончании настроек можно нажать "F10" для сохранения параметров и нажать "OK" для перезапуска системы с новыми параметрами.

Обычно разгон сосредоточен на повышении частоты процессора, что снижает стабильность, но остается широко используемым способом. Ниже показано повышение производительности, достигнутое просредством разгона.

Согласно результатам, повышение производительности составляет около 5%, и система весьма стабильна. Несомненно, пользователи могут определить настройки для своих окружающих условий посредством пошагового подбора.

Конечно, наши читатели знают всё о разгоне. Фактически, многие обзоры процессоров и видеокарт были бы недостаточно полны без рассмотрения потенциала разгона.

Если вы считаете себя энтузиастом, простите нам немного базовой информации - мы перейдём к техническим подробностям уже скоро.

Что же такое разгон? По своей сути, этот термин используется для описания компонента, работающего на более высоких скоростях, чем значится в его спецификациях, чтобы увеличить производительность. Можно разогнать разные компьютерные комплектующие, включая процессор, память и видеокарту. И уровень разгона может быть совершенно разным, от простого прироста производительности у недорогих комплектующих до подъёма производительности до запредельного уровня, штатно недостижимого для продуктов, продающихся в рознице.

В нынешнем руководстве мы сфокусируем внимание на разгоне современных процессоров AMD, чтобы получить максимально возможную отдачу с учётом выбранного вами решения охлаждения.

Выбираем правильные комплектующие

Уровень успеха разгона очень сильно зависит от комплектующих системы. Для начала потребуется процессор с хорошим потенциалом разгона, способный работать на более высоких частотах, чем штатно указывает производитель. AMD сегодня продаёт несколько процессоров, у которых достаточно хороший потенциал разгона, причём линейка процессоров "Black Edition" напрямую нацелена на энтузиастов и оверклокеров из-за разблокированного множителя. Мы протестировали четыре процессора из различных семейств компании, чтобы проиллюстрировать процесс разгона каждого из них.

Для разгона процессора важно, чтобы другие компоненты тоже были подобраны с учётом этой задачи. Довольно критичен выбор материнской платы с BIOS, дружественным к разгону.

Мы взяли пару материнских плат Asus M3A78-T (790GX + 750SB) , которые не только обеспечивают достаточно большой набор функций в BIOS, включая поддержку Advanced Clock Calibration (ACC), а также прекрасно работают с утилитой AMD OverDrive, что важно для выжимания максимума из процессоров Phenom.

Подбор правильной памяти тоже важен, если вы хотите достичь максимальной производительности после разгона. При возможности, мы рекомендуем устанавливать высокопроизводительную память DDR2 , которая способна работать на частотах выше 1066 МГц на материнских платах AM2+ с 45- или 65-нм процессорами Phenom, которые поддерживают DDR2-1066.

При разгоне увеличиваются частоты и напряжения, что приводит к повышению тепловыделения. Поэтому лучше, если в вашей системе будет работать фирменный блок питания, обеспечивающий стабильные уровни напряжений и достаточный ток, чтобы справиться с повышенными требованиями разогнанного компьютера. Слабый или устаревший блок питания, загруженный "под завязку", может испортить все старания оверклокера.

Повышение частот, напряжений и энергопотребления, конечно, приведёт к увеличению уровней тепловыделения, поэтому охлаждение процессора и корпуса тоже немало влияют на результаты разгона. Мы не хотели достичь каких-либо рекордов разгона или производительности с данной статьёй, поэтому мы взяли довольно скромные кулеры ценой $20-25.

Данное руководство призвано помочь тем пользователям, у кого не такой большой опыт разгона процессоров, чтобы они смогли насладиться преимуществом производительности после разгона Phenom II, Phenom или Athlon X2. Будем надеяться, что наши советы помогут начинающим оверклокерам в этом нелёгком, но интересном деле.

Терминология

Разнообразные термины, часто обозначающие одно и то же, могут смутить или даже испугать непосвящённого пользователя. Поэтому перед тем, как мы перейдём непосредственно к пошаговому руководству, мы рассмотрим наиболее часто встречающиеся термины, связанные с разгоном.

Тактовые частоты

Частота процессора (скорость CPU, частота CPU, тактовая частота CPU): частота, на которой центральный процессор компьютера (CPU) выполняет инструкции (например, 3000 МГц или 3,0 ГГц). Именно эту частоту мы планируем увеличить, чтобы получить прирост производительности.

Частота канала HyperTransport : частота интерфейса между CPU и северным мостом (например, 1000, 1800 или 2000 МГц). Обычно частота равняется (но не должна превышать) частоту северного моста.

Частота северного моста : частота чипа северного моста (northbridge) (например, 1800 или 2000 МГц). Для процессоров AM2+ увеличение частоты северного моста приведёт к повышению производительности контроллера памяти и частоты L3. Частота должна быть не ниже канала HyperTransport, но её можно увеличить значительно выше.

Частота памяти (частота DRAM и скорость памяти): частота, измеряемая в мегагерцах (МГц), на которой работает шина памяти. Может указываться как физическая частота, такая как 200, 333, 400 и 533 МГц, так и эффективная частота, такая как DDR2-400, DDR2-667, DDR2-800 или DDR2-1066.

Базовая или эталонная частота : по умолчанию она составляет 200 МГц. Как можно видеть по процессорам AM2+, другие частоты высчитываются из базовой с помощью множителей и иногда делителей.

Расчёт частот

Перед тем, как мы перейдём к описанию расчёта частот, следует упомянуть, что большая часть нашего руководства охватывает разгон процессоров AM2+, таких как Phenom II, Phenom или других моделей Athlon 7xxx на основе ядра K10. Но мы также хотели охватить и ранние процессоры AM2 Athlon X2 на основе ядра K8, такие как линейки 4xxx, 5xxx и 6xxx. У разгона процессоров K8 есть некоторые отличия, которые мы упомянем чуть ниже в нашей статье.

Ниже представлены базовые формулы для расчёта упомянутых выше частот процессоров AM2+.

  • Тактовая частота CPU = базовая частота * множитель CPU;
  • частота северного моста = базовая частота * множитель северного моста;
  • частота канала HyperTransport = базовая частота * множитель HyperTransport;
  • частота памяти = базовая частота * множитель памяти.

Если мы хотим разогнать процессор (увеличить его тактовую частоту), то нужно либо увеличивать базовую частоту, либо повышать множитель CPU. Возьмём пример: процессор Phenom II X4 940 работает с базовой частотой 200 МГц и множителем CPU 15x, что даёт тактовую частоту CPU 3000 МГц (200 * 15 = 3000).

Мы можем разогнать этот процессор до 3300 МГц, увеличив множитель до 16,5 (200 * 16,5 = 3300) или подняв базовую частоту до 220 (220 * 15 = 3300).

Но следует помнить, что другие частоты, перечисленные выше, тоже зависят от базовой частоты, поэтому подъём её до 220 МГц также увеличит (разгонит) частоты северного моста, канала HyperTransport, а также и частоту памяти. Напротив, простое увеличение множителя CPU только повысит тактовую частоту CPU процессоров AM2+. Ниже мы рассмотрим простой разгон через множитель с помощью утилиты AMD OverDrive, а затем перейдём в BIOS для более сложного разгона через базовую частоту.

В зависимости от производителя материнской платы, опции BIOS для частоты процессора и северного моста иногда используют не просто множитель, а соотношение FID (Frequency ID) и DID (Divisor ID). В таком случае формулы будут следующими.

  • Тактовая частота процессора = базовая частота * FID (множитель)/DID (делитель);
  • частота северного моста = базовая частота * NB FID (множитель)/NB DID (делитель).

Сохраняя DID на уровне 1, вы перейдёте к простой формуле множителя, которую мы рассматривали выше, то есть сможете увеличивать множители CPU с шагом 0,5: 8,5, 9, 9,5, 10 и т.д. Но если вы установите DID на 2 или 4, то сможете увеличивать множитель с меньшим шагом. Что усложняет дело, значения могут указываться в виде частот, например 1800 МГц, либо в виде множителей, например 9, при этом вам, возможно, придётся вводить шестнадцатеричные числа. В любом случае, обратитесь к инструкции на материнскую плату или посмотрите в Интернете шестнадцатеричные значения для указания разных FID процессора и северного моста.

Есть и другие исключения, например, возможности задавать множители может и не быть. Так, частота памяти в некоторых случаях задаётся в BIOS напрямую: DDR2-400, DDR2-533, DDR2-800 или DDR2-1066 вместо выбора множителя памяти или делителя. Кроме того, частоты северного моста и канала HyperTransport могут тоже задаваться напрямую, а не через множитель. В целом, мы не советуем особо беспокоиться о подобных различиях, но рекомендуем вернуться к данной части статьи, если возникнет потребность.

Тестовое аппаратное обеспечение и настройки BIOS

Процессоры

  • AMD Phenom II X4 940 Black Edition (45 нм, Quad-Core, Deneb, AM2+)
  • AMD Phenom X4 9950 Black Edition (65 нм, Quad-Core, Agena, AM2+)
  • AMD Athlon X2 7750 Black Edition (65 нм, Dual-Core, Kuma, AM2+)
  • AMD Athlon 64 X2 5400+ Black Edition (65 нм, Dual Core, Brisbane, AM2)

Память

  • 4 Гбайт (2*2 Гбайт) Patriot PC2-6400 (4-4-4-12)
  • 4 Гбайт (2*2 Гбайт) G.Skill Pi Black PC2-6400 (4-4-4-12)

Видеокарты

  • AMD Radeon HD 4870 X2
  • AMD Radeon HD 4850

Кулер

  • Arctic Cooling Freezer 64 Pro
  • Xigmatek HDT-S963

Материнская плата

  • Asus M3A78-T (790GX+750SB)

Блок питания

  • Antec NeoPower 650 Вт
  • Antec True Power Trio 650 Вт

Полезные утилиты.

  • AMD OverDrive : утилита разгона;
  • CPU-Z : утилита системной информации;
  • Prime95 : тест стабильности;
  • Memtest86 : тест памяти (загрузочный CD).

Аппаратный мониторинг: Hardware Monitor, Core Temp, Asus Probe II, другие утилиты в комплекте поставки материнской платы.

Тестирование производительности: W Prime, Super Pi Mod, Cinebench, 3DMark 2006 CPU test, 3DMark Vantage CPU test

  • Вручную настроить Memory Timings (задержки памяти);
  • План электропитания Windows: высокая производительность (High Performance).

Помните, что вы превышаете спецификации производителя. Разгон выполняется на свой страх и риск. Большинство производителей "железа", включая AMD, не дают гарантии в случае повреждений, вызванных разгоном, даже если вы будете использовать утилиту AMD. THG.ru или автор не несут ответственности за повреждения, которые могут возникнуть в ходе разгона.

Знакомство с AMD OverDrive

AMD OverDrive - мощная утилита "всё в одном" для разгона, мониторинга и тестирования, предназначенная для материнских плат на чипсете линейки AMD 700. Многим оверклокерам не нравится использовать программную утилиту под операционной системой, поэтому они предпочитают менять значения напрямую в BIOS. Я тоже обычно избегаю утилит, которые входят в комплект поставки вместе с материнскими платами. Но, протестировав последние версии утилиты AMD OverDrive на наших системах, стало понятно, что утилита довольно ценная.

Мы начнём с рассмотрения меню утилиты AMD OverDrive , выделяя при этом интересные возможности, а также разблокируя расширенные функции, которые нам понадобятся. После запуска утилиты OverDrive вас встречает предупреждающее сообщение, чётко говорящее о том, что вы используете утилиту на свой страх и риск.

Когда вы согласитесь, нажав клавишу "OK", вы попадёте в закладку "Basic System Information ", отображающую информацию о CPU и памяти.

На закладке "Diagram " представлена диаграмма чипсета. Если нажать на компонент, то будет выведена более подробная информация о нём.

Закладка "Status Monitor " очень полезна во время разгона, поскольку она позволяет отслеживать тактовую частоту процессора, множитель, напряжение, температуру и уровень загруженности.

Если нажать на закладку "Performance Control " в режиме "Novice/Новичок", то вы получите простой движок, позволяющий изменять частоту PCI Express (PCIe).

Чтобы разблокировать расширенную настройку частот, перейдите на закладку "Preference/Settings " и выберите "Advanced Mode ".

После выбора режима "Advanced ", закладка "Novice " заменилась закладкой "Clock/Voltage " для разгона.

Закладка "Memory " отображает немало информации о памяти и позволяет настраивать задержки.

Есть даже встроенный тест для быстрой оценки производительности и сравнения её с предыдущими значениями.

Утилита также содержит тесты, нагружающие систему, чтобы проверить стабильность работы.

Последняя закладка "Auto Clock " позволяет выполнить автоматический разгон. Он занимает немало времени, да и весь азарт теряется, поэтому с данной функцией мы не экспериментировали.

Теперь, когда вы знакомы с утилитой AMD OverDrive и перевели её в расширенный режим (Advanced), позвольте перейти к разгону.

Разгон через множитель

С материнской платой на чипсете 790GX и процессорами из серии Black Edition , которые мы использовали, разгон с помощью утилиты AMD OverDrive выполнять довольно просто. Если ваш процессор не относится к линейке Black Edition, то вы не сможете поднять множитель.

Давайте взглянем на штатный режим работы нашего процессора Phenom II X4 940. Базовая частота материнской платы меняется от 200,5 до 200,6 МГц у нашей системы, что даёт частоту ядра между 3007 и 3008 МГц.

На штатной тактовой частоте полезно провести некоторые тесты производительности, чтобы потом сравнивать с ними результаты разогнанной системы (вы можете использовать тесты и утилиты, предложенные нами выше). Тесты производительности позволяют оценить прирост и потерю производительности после изменения настроек.

Чтобы разогнать процессор Black Edition, проверьте наличие галочки "Select All Cores" (выбрать все ядра) на закладке "Clock/Voltage", после чего начните увеличивать множитель CPU небольшими шагами. Кстати, если галочку не ставить, то вы сможете разгонять ядра процессора по отдельности. По мере разгона не забывайте смотреть на температуры и постоянно проводите тесты стабильности. Кроме того, мы рекомендуем делать заметки, касающиеся каждого изменения, где вы будете описывать результаты.

Поскольку от нашего процессора Deneb мы ожидали солидного прироста, то пропустили множитель 15,5x и перешли сразу же к множителю 16x, что дало частоту ядра CPU на уровне 3200 МГц. С базовой частотой 200 МГц каждое увеличение множителя на 1 даёт прирост тактовой частоты 200 МГц, а увеличение множителя на 0,5 - 100 МГц, соответственно. Мы провели стрессовые тесты после разгона с помощью теста стабильности AOD и теста Small FFT Prime95.

После проведения стрессовых тестов Prime 95 на протяжении 15 минут без единой ошибки, мы решили дальше поднимать множитель. Соответственно, следующий множитель 16,5 дал частоту 3300 МГц. И на этой частоте ядра наш Phenom II прошёл через тесты стабильности без всяких проблем.

Множитель 17 даёт тактовую частоту 3400 МГц, и вновь тесты стабильности были выполнены без единой ошибки.

На частоте 3,5 ГГц (17,5*200) мы успешно прошли одночасовое тестирование стабильности под AOD, но примерно через восемь минут в более "тяжёлом" приложении Prime95 мы получили "синий экран" и система перегрузилась. Мы смогли провести все тесты производительности на данных настройках без сбоев, но мы всё же хотели, чтобы наша система прошла через 30-60-минутный тест Prime95 без сбоя. Поэтому максимальный уровень разгона нашего процессора на штатном напряжении 1,35 В составляет между 3,4 и 3,5 ГГц. Если вы не хотите поднимать напряжение, то можно на этом и остановиться. Или вы можете попытаться найти максимальную стабильную частоту CPU при данном напряжении, увеличивая базовую частоту с шагом в один мегагерц, что для множителя 17 даст 17 МГц при каждом шаге.

Если же вы не прочь поднять напряжение, то это лучше делать с небольшим шагом 0,025-0,05 В, при этом нужно следить за температурами. Температуры процессора у нас оставались низкими, и мы начали понемногу поднимать напряжение CPU, при этом небольшой подъём до уровня 1,375 В привёл к тому, что тесты Prime95 выполнялись на частоте 3,5 ГГц совершенно стабильно.

Для стабильной работы с множителем 18 на частоте 3,6 ГГц потребовалось напряжение 1,400 В. Для сохранения стабильности на частоте 3,7 ГГц потребовалось напряжение 1,4875 В, что больше, чем AOD позволяет выставить по умолчанию. Не каждая система сможет обеспечить достаточное охлаждение при таком напряжении. Чтобы увеличить предел AOD по умолчанию, следует отредактировать файл параметров AOD .xml в Блокноте (Notepad), увеличив предел до 1,55 В.

Нам пришлось поднять напряжение до 1,500 В, чтобы система стабильно работала в тестах на 3,8 ГГц с множителем 18, но даже подъём до 1,55 В не привёл к стабильной работе стрессового теста Prime95. Температура ядра во время тестов Prime95 находилась где-то в области 55 градусов Цельсия, то есть нам вряд ли требовалось лучшее охлаждение.

Мы откатились назад до разгона 3,7 ГГц, при этом тест Prime95 успешно проработал целый час, то есть стабильность системы была проверена. Затем мы начали увеличивать базовую частоту с шагом в 1 МГц, при этом максимальный уровень разгона составил 3765 МГц (203*18,5).

Важно помнить, что частоты, которые можно получить через разгон, как и значения напряжений для этого меняются от одного образца процессора к другому, поэтому в вашем случае всё может быть по-другому. Важно увеличивать значения частот и напряжений с небольшим шагом, выполнять при этом тесты стабильности и отслеживать температуру во время всего процесса. С данными моделями CPU увеличение напряжения не всегда помогает, и процессоры могут даже потерять стабильность, если напряжение повышено слишком сильно. Иногда для лучшего разгона достаточно просто усилить систему охлаждения. Чтобы результаты были оптимальными, мы рекомендуем сохранять температуру ядра CPU под нагрузкой ниже 50 градусов Цельсия.

Хотя мы не смогли увеличить частоту процессора выше 3765 МГц, всё равно есть способы и дальше повысить производительность системы. Подъём частоты северного моста, например, может заметно сказаться на производительности приложений, поскольку он увеличивать скорость работы контроллера памяти и кэша L3. Множитель северного моста нельзя менять из утилиты AOD, но это можно сделать в BIOS.

Единственный способ увеличить тактовую частоту северного моста под AOD без перезагрузки заключается в экспериментах с тактовой частотой CPU с низким множителем и высокой базовой частотой. Однако при этом будет увеличиваться и скорость HyperTransport, и частота памяти. Мы ещё подробнее рассмотрим этот вопрос в нашем руководстве, а пока позвольте привести результаты разгона трёх других процессоров Black Edition.

Два других процессора AM2+ разгоняются точно так же, как и Phenom II, за исключением ещё одного шага - включения Advanced Clock Calibration (ACC). Функция ACC доступна только на материнских платах с южным мостом AMD SB750, таких как наша модель ASUS с чипсетом 790GX. Функцию ACC можно включить как в AOD, так и в BIOS, но в обоих случаях требуется перезагрузка.

У 45-нм процессоров Phenom II лучше отключать ACC, поскольку AMD заявляет, что данная функция уже присутствует в кристалле Phenom II. Но с 65-нм процессорами K10 Phenom и Athlon лучше выставить ACC в положение Auto, +2% или +4%, что может увеличить максимально достижимую частоту процессора.

Штатные частоты.

Максимальный множитель

Максимальный разгон

На скриншотах выше показан разгон нашего Phenom X4 9950 на штатной частоте 2,6 ГГц с множителем 13x и напряжением процессора 1,25 В. Частота памяти зачёркнута, поскольку она была выставлена в DDR2-1066, а не в режим DDR2-800, который мы использовали для разгона. Множитель был увеличен до 15x, что дало 400-МГц разгон на штатном напряжении. Напряжение было увеличено до 1,45 В, затем мы пробовали настройку ACC в режиме Auto, +2%, и +4%, но Prime95 смог отработать только 12-15 минут. Что интересно, с функцией ACC в режиме Auto, множителем 16,5x и напряжением 1,425 В мы смогли увеличить базовую частоту до 208 МГц, что дало более высокий стабильный разгон.

Штатные частоты

Максимальный разгон без увеличения напряжения

Максимальный разгон без использования ACC

Максимальный разгон

Наш Athlon X2 7750 работает на штатной частоте 2700 МГц и напряжении 1,325 В. Без прироста напряжения мы смогли увеличить множитель до 16x, что дало стабильную частоту работы 3200 МГц. Система стабильно работала и на 3300 МГц, когда мы немного увеличили напряжение до 1,35 В. С отключённой функцией ACC мы увеличивали напряжение процессора до 1,45 В с шагом по 0,025 В, но система не смогла стабильно работать с множителем 17x. Она "вылетала" даже до стрессового тестирования. Выставление ACC для всех ядер в режим +2% позволило достичь часа стабильной работы Prime95 при напряжении 1,425 В. Процессор не очень хорошо реагировал на подъём напряжения выше 1,425 В, поэтому мы смогли получить максимальную стабильную частоту 3417 МГц.

Преимущества от включения ACC, как и результаты разгона в целом, существенно разнятся от одного процессора к другому. Впрочем, приятно всё же получить в своё распоряжение подобную опцию, да и можно потратить время на тонкую проверку разгона каждого ядра. Мы не получили серьёзного прироста в разгоне от включения ACC на обоих процессорах, но мы всё равно рекомендуем ознакомиться с обзором 790GX, где мы подробнее рассмотрели ACC, и там эта функция более серьёзно повлияла на потенциал разгона Phenom X4 9850.

Опции BIOS

Наша материнская плата Asus M3A78-T была прошита последней версией BIOS, содержащей поддержку новых CPU, а также обеспечивающей наилучшие шансы успешного разгона.

Для начала вам нужно войти в BIOS материнской платы (обычно это делается нажатием клавиши "Delete" во время загрузочного экрана POST). Ознакомьтесь с инструкцией материнской платы и узнайте, как можно очистить CMOS (обычно с помощью перемычки), если система не будет проходить загрузочный тест POST. Помните, что если это случится, то все предварительно сделанные изменения, такие как время/дата, выключение графического ядра, порядок загрузки и т.д. будут потеряны. Если вы новичок в настройке BIOS, то уделите особое внимание изменениям, которые вы будете производить, и записывайте изначальные настройки, если не сможете их вспомнить потом.

Простая навигация по меню BIOS совершенно безопасна, поэтому если вы новичок в области разгона, то ничего не бойтесь. Но убедитесь в том, что вы будете выходить из BIOS без сохранения сделанных изменений, если считаете, что случайно можете что-то испортить. Обычно это осуществляется клавишей "Esc" или соответствующей опцией меню.

Давайте углубимся в BIOS Asus M3A78-T в качестве примера. Меню BIOS различаются от одной материнской платы к другой (и от одного производителя к другому), поэтому используйте инструкцию, чтобы найти соответствующие опции в BIOS вашей модели. Кроме того, помните, что доступные опции серьёзно зависят от модели материнской платы и чипсета.

В основном меню (Main) можно задавать время и дату, там же отображаются подключённые накопители. Если в пункте меню есть синий треугольник слева, то можно перейти в подменю. Пункт "System Information", например, позволяет посмотреть версию и дату BIOS, марку процессора, частоту и объём установленной оперативной памяти.

Меню "Advanced" состоит из нескольких вложенных подменю. Пункт "CPU Configuration" выдаёт информацию о процессоре и содержит ряд опций, некоторые из которых лучше отключить для разгона.

Большую часть времени вы наверняка будете проводить в пункте меню "Advanced" "JumperFree Configuration". Ручное выставление важных настроек обеспечивается переводом пункта "AI Overclocking" в режим "Manual". У других материнских плат эти опции будут наверняка расположены в ином меню.

Теперь у нас есть доступ к необходимым множителям, которые можно менять. Обратите внимание, что в BIOS множитель CPU меняется с шагом 0,5, а множитель северного моста - с шагом 1. А частота канала HT указывается напрямую, а не через множитель. Эти опции существенно разнятся между разными материнскими платами, у некоторых моделей они могут выставляться через FID и DID, о чём мы упоминали выше.

В пункте "DRAM Timing Configuration" можно задавать частоту памяти, будь то DDR2-400, DDR2-533, DDR2-667, DDR2-800 или DDR2-1066, как показано на фотографии. В данной версии BIOS вам не потребуется устанавливать множитель/делитель памяти. В пункте "DRAM Timing Mode" можно задавать задержки, как автоматически, так и вручную. Уменьшение задержек может увеличить производительность. Впрочем, если у вас под рукой нет полностью стабильных значений задержек памяти на разных частотах, то во время разгона весьма разумно увеличить задержки CL, tRDC, tRP, tRAS, tRC и CR. Кроме того, вы можете получить более высокие частоты памяти, если увеличите задержки tRFC до очень высоких значений, таких как 127,5 или 135.

Позднее все "ослабленные" задержки можно вернуть обратно, чтобы выжать больше производительности. Процедура уменьшения одной задержки за один запуск системы отнимает много времени, но его стоит потратить, чтобы получить максимальную производительность при сохранении стабильности. Когда ваша память будет работать за пределами спецификаций, проведите тест стабильности с утилитами, такими как загрузочный CD Memtest86, поскольку нестабильная работа памяти может привести к порче данных, что нежелательно. С учётом всего сказанного, вполне безопасно дать материнской плате возможность регулировать задержки самостоятельно (обычно при этом выставляются довольно "ослабленные" задержки) и уделить основное внимание разгону CPU.

Расширенный разгон

В данном случае прилагательное "расширенный" не очень уместно, поскольку, в отличие от рассмотренных выше способов, мы приведём здесь разгон через BIOS путём повышения базовой частоты. Успех такого разгона зависит от того, насколько хорошо могут разгоняться компоненты вашей системы, и чтобы найти возможности каждого из них, мы будем перебирать их один за другим. В принципе, никто не заставляет следовать всем приведённым шагам, но нахождение максимума для каждого компонента может дать, в итоге, более высокий разгон, поскольку вы будете понимать, почему упираетесь в тот или иной предел.

Как мы говорили выше, некоторые оверклокеры предпочитают прямой разгон через BIOS, в то время как другие используют AOD, чтобы сэкономить время для тестирования, поскольку каждый раз перегружаться не требуется. Настройки затем можно вручную внести в BIOS и попытаться ещё сильнее их улучшить. В принципе, вы можете выбирать любой способ, поскольку каждый имеет как свои преимущества, так и недостатки.

Опять же, неплохо будет отключить в BIOS опции энергосбережения Cool"n"Quiet и C1E, Spread Spectrum и автоматические системы управления вентилятором, которые снижают скорость его вращения. Также мы отключали опции "CPU Tweak" и "Virtualization" для части наших тестов, но так и не обнаружили заметного влияния на какой-либо из процессоров. Позднее эти функции можно включить, если требуется, и вы сможете проверить, влияют ли они на системную производительность или на стабильность вашего разгона.

Поиск максимальной базовой тактовой частоты

Теперь мы перейдём к технике, которым придётся следовать владельцам процессоров, не относящихся к линейке Black Edition для их разгона (они не могут увеличивать множитель). Первый наш шаг заключается в поиске максимальной базовой частоты (частоты шины), на которой могут работать процессор и материнская плата. Вы быстро заметите всю путаницу в именовании различных частот и множителей, о чём мы уже упоминали выше. Например, базовая частота (reference clock) в AOD названа в CPU-Z "Частотой шины/Bus Speed" и "Частотой FSB/FSB Frequency" в данном BIOS.

Если вы планируете заниматься разгоном только через BIOS, то тогда следует снизить множитель CPU, множитель северного моста, множитель HyperTransport и множитель памяти. В нашем BIOS снижение множителя северного моста автоматически снижает доступные частоты канала HyperTransport до уровня или ниже получающейся частоты северного моста. Множитель CPU можно оставить штатный и затем понижать его в AOD, что даёт возможность в дальнейшем поднимать частоту CPU без перезагрузки.

У нашего процессора Phenom X4 9950 мы в утилите AOD выбрали множитель 8x, поскольку даже 300-МГц базовая частота при таком множителе будет находиться ниже штатной частоты CPU. Затем мы подняли базовую частоту с 200 МГц до 220 МГц, а потом увеличивали её с шагом 10 МГц вплоть до 260 МГц. Затем мы перешли на шаг 5 МГц и увеличили частоту до, максимум, 290 МГц. В принципе, вряд ли стоит увеличивать эту частоту до предела стабильности, поэтому мы могли легко остановиться на уровне 275 МГц, поскольку маловероятно, что северный мост сможет работать на столь высокой частоте. Так как мы разгоняли базовую частоту в AOD, мы проводили тесты стабильности AOD в течение нескольких минут, чтобы убедиться в стабильной работе системы. Если бы делали то же самое в BIOS, то простая возможность загрузки под Windows, вероятно, стала бы достаточно хорошим тестом, а затем мы бы провели финальные тесты стабильности при высокой базовой частоте, чтобы окончательно убедиться.

Поиск максимальной частоты CPU

Поскольку мы уже снижали множитель в AOD, мы знаем максимальный множитель CPU и теперь мы уже знаем максимальную базовую частоту, которую мы можем использовать. С процессором Black Edition мы можем экспериментировать с любой комбинацией в данных пределах, чтобы найти максимальное значение других частот, таких как частота северного моста, частота канала HyperTransport и частота памяти. На данный момент мы продолжим тесты разгона, как будто множитель CPU был заблокирован на 13x. Мы будем искать максимальную частоту CPU, увеличивая частоту шины на 5 МГц за один раз.

Будь то разгон через BIOS или через AOD, мы всегда можем вернуться к базовой частоте 200 МГц и выставить множитель обратно в 13x, что даст штатную тактовую частоту 2600 МГц. Кстати, при этом множитель северного моста по-прежнему останется 4, что даёт частоту 800 МГц, канал HyperTransport будет работать на 800 МГц, а память - на 200 МГц (DDR2-400). Мы будем следовать прежней процедуре повышения базовой частоты с небольшим шагом, выполняя каждый раз тесты стабильности. При необходимости мы будем повышать напряжение CPU, пока не достигнем максимальной частоты CPU (включив параллельно ACC).

Максимальный прирост производительности

Найдя максимальную частоту CPU наших процессоров AMD, мы сделали немалый шаг в сторону увеличения производительности системы. Но частота процессора - только часть разгона. Чтобы выжать максимум производительности, можно поработать над другими частотами. Если повысить напряжение северного моста (NB VID в AMD OverDrive), то его частоту можно увеличить до 2400-2600 МГц и выше, при этом вы повысите скорость работы контроллера памяти и кэша L3. Увеличение частоты и снижение задержек оперативной памяти тоже может положительно сказаться на производительности. Даже высокопроизводительную память DDR2-800, которую мы использовали, можно разогнать до частот выше 1066 МГц, увеличив напряжение и, возможно, ослабив задержки. Частота канала HyperTransport обычно не влияет на производительность на уровне выше 2000 МГц и может легко привести к потере стабильности, но её тоже можно разогнать. Частоту PCIe тоже можно немного разогнать до уровня где-то 110 МГц, что тоже может дать потенциальный прирост производительности.

По мере медленного подъёма всех упомянутых частот нужно проводить тесты стабильности и производительности. Настройка разных параметров - процесс длительный, возможно, он выходит за рамки нашего руководства. Но выполнять разгон всегда интересно, тем более что вы получите значимый прирост производительности.

Заключение

Будем надеяться, что у всех наших читателей, желающих разогнать процессор AMD, теперь на руках есть достаточное количество информации. Сейчас вы можете приступить к разгону, используя утилиту AMD OverDrive или другие способы. Помните, что результаты и точная последовательность действий меняются от одной системе к другой, поэтому не следует слепо копировать наши настройки. Используете данное руководство только в качестве наставления, которое поможет вам самостоятельно найти потенциал и ограничения вашей системы. Не торопитесь, не увеличивайте шаг, отслеживайте температуры, выполняйте тесты стабильности и, при необходимости, немного повышайте напряжение. Всегда осторожно нащупывайте предел безопасного разгона, поскольку резкий прирост частоты и напряжения вслепую - это не только ошибочный подход для успешного разгона, но он ещё и может вывести из строя ваше "железо".

Последний совет: у каждой модели материнской платы есть свои особенности, поэтому не мешает до разгона ознакомиться с опытом других владельцев такой же платы. Советы опытных пользователей и энтузиастов, которые попробовали данную модель материнской платы в работе, помогу избежать "подводных камней".

Дополнение

Мы провели тесты ещё одного экземпляра процессора AMD Phenom II X4 940 Black Edition, предоставленного российским представительством AMD. Он успешно заработал на 3,6 ГГц, когда мы увеличили напряжение питания до 1,488 В (данные CPUZ). Похоже, уровень 3,6 ГГц является пороговым для большинства процессоров при воздушном охлаждении. Контроллер памяти мы успешно разогнали до 2,2 ГГц.

Доброго времени суток, товарищи оверклокеры и будущие оверклокеры, а также просто читатели.

В этой статье я напишу как разогнать процессор AMD Phenom II х4 965ВЕ. Я не собираюсь выдвигать эту писанину как единственную, неповторимую и безошибочную инструкцию к разгону. Я постарался написать ее предельно простым и понятным языком. Все выводы и рекомендации здесь обосновываются на моем личном опыте и наблюдениях, а также многочисленных FAQ "ах оверклокерских форумов, чтении и анализе различных статей по разгону, ну и, само собой, обмене опытом при общении на разных оверклокерских форумах.

В этой статье вы не встретите никаких философских размышлений о природе разгона, о его целях и задачах и т.д.

Здесь я простым, обычным языком поделюсь своим опытом по разгону и дам ряд рекомендаций и советов.

Заранее предупреждаю, что статья предназначена для людей компьютерно-грамотных, более-менее понимающих сленг компьютерщиков, умеющих самостоятельно разобрать/собрать из комплектующих системный блок, разбирающихся и различающих процессоры хотя бы по их названиям, знающих их основные характеристики, умеющих залезать и немного копаться в биос, но, тем не менее - не разбирающихся (плохо разбирающихся) или только начинающих разбираться в разгоне.

Уже опытные люди , ничего нового из этой статейки не найдут - разве что могут немного "встряхнуть" память, да указать мне найденные ими ошибки.

Теперь об ошибках. Поскольку я - человек, то могу допустить ошибки. Чем больше вы их заметите - тем лучше. Напишите тут - и я их исправлю. С вашей помощью эта статья может стать еще лучше, еще информативнее. Если вы считаете, что я недостаточно осветил некоторые вопросы - тоже пишите.

На самом деле я должен был написать эту инструкцию давно - года два-три назад. По тем или иным причинам это не удавалось. Главной причиной, само собой, является могучая лень. Тем более, по-прежнему есть люди, которые интересуются разгоном процессоров феном2.

Как и полагается в любой статье по разгону - дискеймер :

Напоминаю, что вы действуете на свой страх и риск. Я за ваши манипуляции (после прочтения моей и не моей тоже статьи) с вашим и не вашим компьютером и за последующие за ними негативные и позитивные тоже последствия не отвечаю.

Причиной создания этой статьи, является обращение ко мне новичков за советами по разгону процессоров, конкретно - AMD Phenom II (далее - просто феном2). Еще учесть следует то, что я вспоминаю молодого себя, когда ничего не умел и не знал. И о существовании таких гайдов даже и не подозревал.

Немного про себя [ эту часть я настоятельно рекомендую пропустить, ибо ничего полезного она не несет ].

[Кстати, вопрос всем - может эту часть стоит удалить? Может она и не нужна вовсе статье?]

Начал впервые разгон с 2008 года - первый свой процессор Intel Pentium Dual Core E 2160 , самостоятельно - без чтения соответствующих материалов и знания чего-либо - даже самому удивительно, разогнал постепенно по шине до ~2400 МГц - тогда я вообще не знал, что напряжение на ядре надо увеличивать. Но все равно - материнка была откровенным УГ с убогим же биос, которая позволяла лишь шину менять, напряжение же было залочено. Потом я купил хорошую матплату на MSI (названия уже за давностью лет не помню) и вроде бы (как мне тогда казалось) отличный по крайней мере - внешне, как мне тогда казалось кулер Asus Triton 75 который на деле оказался фуфлом и разогнал с увеличением напряжения до ~3300 МГц. Затем купил дорогущий в те времена Zalman CNPS 9700 A LED . В те времена я даже и не догадывался, что мосфеты при увеличении напряжения имеют свойство греться, да и вообще ничего не знал про то, как осуществляется питание процессора, что такое температурные пределы и троттлинг, что такое ФАКи и прочее - вообще с интернетом в нашем городе те времена все было очень печально.

Соответственно, тогда я не читал никаких статей и форумов поскольку инета не было. Приходилось все самому постигать опытным путем - медленно, зато верно. Просто удивительно, что тогда я ничего не спалил. Причиной этому, скорее всего, было то, что я неосознанно применял методику медленного разгона. Я и понятия не имел про тестирование на стабильность процессора и памяти. О том, что разгоняют видеокарту - вообще не знал:-)

Попутно вынужденно разгонял оперативную память - FSB ведь одна, сами понимаете. Через год сменил платформу на АМД, приобрел оверклокерский (как мне тогда казалось) комплект памяти Kingston HyperX 1066 МГц , мать Gigabyte GA-MA790X-UD3P (кстати - великолепная материнка), ну и процессор PhenomII x 3 710 2600 МГц. Специально для разгона. Только тогда я уже начал почитывать (лишь почитывать и то лишь временами) сайт overclockers.ru

Со временем, мать сменил на Gigabyte GA-890XA-UD3 - тоже отличная оверклокерская мать. Сейчас думаю - а почему сменил мать - северный мост в обоих случаях один и тот же 790Х , южный же с SB 750 изменился на SB 850 . Ведь фактически - разницы не было.

Перебрал три процессора, тупо покупая и продавая по очереди (в нашем городе до сих пор нету магазина, которая практиковала бы такую замечательную фичу как "moneyback") PhenomII x 3 710 , один процессор PhenomII x 3 720ВЕ - и все это ради получения заветных как мне тогда казалось 4 ГГц . Не получилось. Как я сейчас понимаю, виной были первые ревизии PhenomII. Все они стабильно разлачивались до полноценных PhenomII x 4 . Но, максимум частотного потолка у них был разный - от 3400 до 3700 МГц. Танцы с бубном вокруг биоса, напряжений и т.д. и т.п., в том числе и в режиме отключения нескольких ядер, не помогали. В итоге купил 6-ядерный свежевышедший и чуток уже скинувший цены PhenomII x 6 1090 BE . Вот он сразу без базара взял стабильные 4000 МГц при приемлемом напряжении. На 4100-4200 МГц в виндоус заходил, но стабильности не было. Кстати, для этого я сменил кулер на "народный" и очень популярный (да и сейчас вроде) тогда Scythe Mugen 2 Rev . B (спасибо тогдашнему голосованию на форуме оверклокерс.ру - " Лучший башенный кулер ").

Получив заветные 4 ГГц на феном2, у меня несколько снизился интерес к разгону. И я подумал, что неплохо было бы перенестись на свежайший тогда сокет 1155 - и я, продав феном2, приобрел процессор Intel Core i 5 2500 K . К тому времени я сдружился с одним магазином и перебрал три таких процессора и нашел "тот самый проц", который давал стабильные 5 ГГц на воздухе.

Для этого я заказал в этом же магазине топовую тогда матплату MSI P 67 A - GD 80 (лишь через полгодика позднее вышел дорогущий Big Bang-Marshal ). Но потом увидел замечательную плату - ASRock P 67 Extreme 6 ( B 3) - сразу взял ее - только из-за 10 внутренних сата-портов (у меня тогда как раз 10 штук 3,5"-хардов подкопилось). Опять же там были великолепные кнопки clear _ cmos , power , reset (а MSI GD80 я продал). Также в том же самом магазине я заказал и взял тогдашний лучший кулер в мире =) ThermalRight Silver Arrow - который и сейчас лучший , если навесить на него пару-тройку TR TY -150 . Поскольку стабильные 5 ГГц (при рекомендуемых 1,40 В) уже были покорены, я поставил процессор на "экономичные" 4200 МГц при 1,32 В. Что странно , через полгодика он перестал держать 5 ГГц, несмотря на колдования -копания в биосе. Ну да ладно - бывает, я подумал и благополучно забыл об этом.

Потом, со временем, я взял для тестов Noctua NH - D 14 , TR Archon , ну и Zalman CNPS 10 X Flex , "для референсу", так сказать. И написал Три короля...

Со временем добыл еще Архонтов , итого их у меня стало пять. Одолжил в магазине еще пару штук - итого стало семь.И написал Сравнение семи Архонтов...

А потом несколько людей написали мне, что неплохо было бы осветить тему разгона процессоров феном2. Вот об этом и пойдет речь.

++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++

Итак - вернемся же к нашим баранам феномам.

Итак, у вас есть процессор феном2 х4 965ВЕ. Напомню,что буквы ВЕ означают Black Edition, то есть разблокированные в сторону увеличения множители, главным образом - CPU и CPU/NB.

Также у вас в обязательном порядке должен быть хороший процессорный кулер и хорошая материнская плата. Это необходимые условия для безопасного и стабильного разгона. Особенно это важно, при большой нагрузке на процессор в течение длительного времени.

ИМХО, подходит ли тот или иной кулер для разгона, можно определить двумя способами:

Определить, подходит ли материнская плата к разгону можно по-чайниковски навскидку - по присутствию/отсутствию радиаторов на цепях питания , также называющихся мосфетами (полевыми транзисторами, полевиками). Также пригодность матплаты к разгону прямо можно определить по числу фаз питания процессора. Чем больше - тем лучше.

Также необходим БП с несколько избыточной мощностью - поскольку после разгона процессор начинает потреблять больше энергии. Подробнее об этом я высказался . Настоятельно рекомендую ее прочитать, во избежание возникновения "лишних" вопросов.

Разгонять проц, по идее, очень легко. У нас есть процессор феном2 х4 965ВЕ, у которого номинальный множитель равен 17 и, следовательно, номинальная тактовая частота равна 17 х 200 МГц = 3400 МГц. Номинальное напряжение процессора при этом - 1,40 В.

Для разгона процессора есть два пути: по шине и по множителю. О них подробнее ниже.

1. Разгон по шине. Как делать?

По номиналу частота шины равна 200 МГц. Увеличивая ее, мы можем увеличить итоговую частоту процессора. Например, увеличим с 200 МГц до 230 МГц. Тогда при номинальном множителе проца, равном 17, имеем итоговую частоту в 17 х 230МГц = 3910 МГц. И мы получили прирост в 3910-3400 = 510 МГц.

Но , просто так процессор на своем номинальном напряжении (равном 1,40 В) эту частоту в 3910 МГц не возьмет - тупо не хватит питания процессору - чтобы работать на этой частоте. Поэтому приходится немного увеличивать напряжение. Я частоту в 3910 МГц взял лишь в качестве примера, поскольку для каждого процессора потолок разгона индивидуален, равно как и напряжение , при котором проц возьмет эту частоту.

Возьмем три одинаковых процессора - , допустим, первый из них легко возьмет 4 ГГц, при напряжении 1,46 В.

Второй процессор, также допустим, осилит 4 ГГц лишь при сильном "кочегаривании" - напряжении, равном 1,50 В.

А третий процессор, допустим, возьмет максимум 1,38 ГГц - как бы ни мы увеличивали напряжение.

Вывод: разгон - это лотерея. Потенциал разгона у каждого процессора - свой.

Перед разгоном следует, через биос, выключить все энергосберегающие функции . Эти функции биос работают на автомате , самостоятельно выставляя напряжение питания процессоров и его частоту. Цель этих энергосберегающих технологий - сберечь электроэнергию в состоянии простоя компа, путем уменьшения множителя до 4 (4 х 200 МГц = 800 МГц), так и подаваемого на проц напряжения, следовательно, снижая общее энергопотребление системы.

Нередки случаи, когда разогнанный процессор работал некорректно из-за этих функций. Поэтому их следует выключить.

В биосе они скрываются под именами Cool " n " quiet , а также C 1 E - их следует поставить из в положение .

Фото energo-enabled

1.1. Методика разгона по шине

1. Заходим в биос. Сбрасываем все на дефолт клавишей F2 или F5 или F8 или F9 и т.д. - у каждой матплаты по-своему. Сохраняемся и выходим.

2. Заходим в биос.

Смотрим ту часть, которая отвечает за разгон. В моем случае все выглядит таким образом:




Запоминаем (новичкам можно и на бумажке записать) эти цифры:

Current CPU Speed - текущая частота процессора.

Target CPU Speed - частота процессора, которую мы задаем на данный момент.

Current Memory Frequency - текущая частота оперативной памяти.

Current NB Frequency - текущая частота встроенного в процессор контроллера памяти и кэш памяти третьего уровня (L3), его еще называют CPU/NB. Именно эта частота решает, с какой скоростью будут "разговаривать" процессор и оперативная память. Частоту CPU/NB тоже можно разогнать - и прирост от нее более заметный, нежели при аналогичном разгоне самого процессора.

Current HT Link Speed - текущая частота шины Hyper Transport (далее - HT), которая соединяет северный мост и процессор. Хотя изначально реальные частоты CPU/NB и HT равны - эффективная скорость (точнее - пропускная способность) у шины HT настолько большая (5,2 миллиардов посылок в секунду), что разгон ей даже и не нужен.

К тому же ее архитектура такова, что частота HT не может быть выше частоты CPU/NB. Поэтому следует разгонять только CPU/NB, а частоту HT оставляют на номинале - 2000 МГц.

3. Теперь начинаем фиксить необходимые параметры:


AI Overclock Tuner - из ставим в , то есть автоматический разгон переводим в ручной режим. Это позволяет нам управлять частотой шины.

CPU Ratio - множитель проца переводим из в , при помощи клавиш "плюс" и "минус". То есть фиксируем/закрепляем номинальный множитель - чтобы "случайно" биос автоматом не изменил его.

CPU Bus Frequency - шину проца из ставим - это номинальные 200 МГц.

PCI - E Frequency - шину PCI-E фиксим на номинальных 100 МГц.

Memory Frequency - частоту памяти фиксим на родных 1333 МГц.

CPU / NB Frequency - частоту фиксим на родных 2000 МГц.

HT Link Speed - также фиксим на родных 2000 Мгц.

CPU Spread Spectrum - ставим в - отключаем фичу, которая снижает ЭМИ от компьютера, это дает стабильность при разгоне. Почему - читаем .


PCI - E Spread Spectrum - тоже ставим в - чисто для перестраховки.

EPU Power Saving Mode - энергосберегающая технология фирмы Asus, позволяющая регулировать энергопотребление компонентов матплаты. Как я писал выше - в состоянии разгона - всякие "энергосберегалки" - это зло, поэтому ставим ее в .

Затем идут регулировки напряжений (подраздел Digi + VRM ) - здесь трогаем только те, которые непосредственно отвечают за управление напряжением процессора. Это:

CPU Voltage Frequency - переводим из положения ставим в - для ручной регулировки вольтажа.


CPU & NB Voltage -переводим из в - это позволяет вручную прямо указать напряжение проца. В режиме же напряжение проца указывается смещением (плюс или минус) относительно номинального напряжения , коим является, как на фотке четко видно - 1,368 В . А такая регулировка нам это ни к чему - только больше путает новичков.

CPU Manual Voltage - при помощи клавиш "плюс" и "минус" фиксим номинальное напряжение - 1,368750 В.

Вот таким образом мы зафиксировали все номинальные напряжения компьютера, чтобы никакая автоматика биоса уже не смогла их изменить. Сохраняем биос и перезагружаемся.

4. Заходим в ОС.

Скачиваем и устанавливаем самые свежие/последние версии программ:

- CPU - Z - для мониторинга состояния процессора - множителя и итоговой частота процессора, а также его напряжения.

- Core Temp - для мониторинга температуры процессора.

- Lin Х - программа для создания максимальной нагрузки процессору. Эта программа нагружает процессор системой линейных алгебраических уравнений, которые равномерно под завязку нагружают все ядра процессора, поскольку хорошо распараллеливаются.

Для более-менее точного тестирования стабильности процессора на указанной связке [частота CPU - напряжение CPU ] в принципе достаточно в настройках программы LinX указать 10 прогонов, с использованием более 50% объема от общей оперативной памяти. При 8 Гб памяти я рекомендую использовать 5 Гб памяти.

На картинке снизу я указал, как вы можете заметить, 10 прогонов при использовании 1 Гб памяти (1024 Миб). МиБ (мебибайт) - это тот же российский мегабайт - 2 20, но по стандарту по стандарту МЭК. Так что разницы нет и бояться не стоит.

5. Открываем CPU-Z, Core Temp и Linx. Окна их ставим рядом так, чтобы они не мешали друг другу.

Запускаем LinX в 10 прогонов.

После перезагружаемся.

6. Заходим в биос.

И увеличиваем CPU Bus Frequency c 200 до 210 МГц.


Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3570 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Память - 1399 МГц.

CPU/NB и HT - по 2100 МГц.

Под словом " несильно отличаются " подразумеваются, что они попадают в промежуток (+/-) 100 МГц от номинальных частот.

7. Заходим в ОС.

Запускаем LinX в 10 прогонов.

Сделать фото!!!

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

После перезагружаемся.

8. Заходим в биос.

И увеличиваем CPU Bus Frequency c 210 до 220 МГц.


Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3740 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Память стала 1466 МГц.

CPU/NB и HT стали по 2200 МГц.

Поэтому чтобы частоты памяти сильно высоко не "задралась" относительно номинальных 1333 МГц, уменьшаем ее как на картинках ниже (также это можно проделать клавишами плюс и минус) до 1172 МГц.

Запускаем LinX в 10 прогонов.

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

После перезагружаемся.

10. Заходим в биос.

И увеличиваем CPU Bus Frequency c 220 до 230 МГц.


Как можно заметить параметр Target CPU Speed одновременно увеличивается до 3910 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Одновременно с этим растут и частоты памяти, CPU/NB и HT.

Память - 1225 МГц.

CPU/NB и HT - по 2070 МГц.

Частоты памяти, CPU/NB и HT несильно отличаются от номинальных - поэтому их не трогаем.

Сохраняемся и перезагружаемся.

11. Заходим в ОС.

Запускаем LinX в 10 прогонов.

И смотрим, до скольки максимум прогревается процессор. Запоминаем производительность процессора в Гфлопс.

После перезагружаемся.

12. Заходим в биос.

И увеличиваем CPU Bus Frequency c 230 до 240 МГц.


Как можно заметить параметр Target CPU Speed одновременно увеличивается до 4080 МГц. Т.е. мы разогнали проц до этой частоты с номинальных 3400 МГц.

Но - одновременно с этим растут и частоты памяти, CPU/NB и HT.

Память стала 1279 МГц. Ее не трогаем, поскольку она в входит в промежуток 1333 МГц (+/-) 100 МГц.

CPU/NB и HT стали по 2160 МГц.

Частоты CPU/NB и HT снижаем до приемлемых 1920 МГц. Напомню, что номинальные частоты CPU/NB и HT равны 2000 МГц.



Таким образом, при разгоне через шину, мы постоянно должны следить, чтобы частоты памяти CPU/NB и HT не сильно далеко уходили от номинальных. Почему - объясню позднее.

Сохраняемся и перезагружаемся.

13. Заходим в ОС.

Опа! Вдруг возникает синий экран смерти - это означает одно - для данной частоты процессора (4080 МГц ) выставленного процессорного напряжения в биос (по п.3) - 1,368750 В - не хватает .


Нажимаем кнопку reset и перезагружаемся.

14. Заходим в биос.

По п.3 находим параметр CPU Manual Voltage - и снова при помощи клавиш "плюс" и "минус" повышаем и фиксим напряжение - 1,381250 В.


Сохраняемся и перезагружаемся.

Продолжение - завтра.

Текущая страница: 5 (всего у книги 11 страниц)

Шрифт:

100% +

Параметры автоматического разгона

В некоторых системных платах есть специальные параметры для комплексного разгона системы, позволяющие увеличить ее производительность, особо не вдаваясь в тонкости настройки отдельных компонентов. Этот способ доступен для начинающих пользователей, но его эффективность может быть невысокой, а в некоторых случаях система даже может работать нестабильно.

Dynamic Overclocking (D.O.T.)

С помощью этого параметра можно задействовать технологию динамического разгона, которая применяется в ряде системных плат от MSI. Система отслеживает нагрузку на процессор, и когда она достигнет максимума, его производительность будет увеличена, а после спада нагрузки процессор автоматически возвратится в штатный режим.

Возможные значения:

□ Private, Sergeant, Captain, Colonel, General, Commander – выбор одного из указанных значений позволит задать уровень ускорения процессора от 1 % (для Private) до 15 % (для Commander).

Некоторые системные платы MSI позволяют выполнить расширенную настройку динамического разгона. Параметр Dynamic Overclocking Mode позволяет выбирать компоненты для разгона, а с помощью параметров CPU D.0.T3 step 1/2/3 setting и PCIE D.0.T3 step 1/2/3 setting можно подстраивать уровни разгона для процессора и шины PCI Express.

CPU Intelligent Accelerator 2 (C.I.A. 2)

C.I.A. 2 – технология динамического разгона, аналогичная D.O.T., но применяющаяся в системных платах Gigabyte.

Возможные значения:

□ Disabled – технология динамического разгона не используется;

□ Cruise, Sports, Racing, Turbo, Full Thrust – выбор одного из указанных значений задает уровень ускорения процессора от 5 % (Cruise) до 19% (Full Thrust).

Memory Performance Enhance (Performance Enhance)

Параметр позволяет повысить производительность оперативной памяти в системных платах Gigabyte и некоторых других производителей.

Возможные значения:

□ Standard (Normal) – разгон оперативной памяти не используется;

□ Fast, Turbo, Extreme – выбор одного из уровней разгона. В зависимости от модели системной платы эффект от этих значений может различаться.

AI Overclocking (Al Tuning)

С помощью этого параметра, который есть в некоторых системных платах ASUS, можно выбрать один из доступных вариантов разгона. Возможные значения:

□ Manual – все параметры разгона можно изменять вручную;

□ Auto – устанавливаются оптимальные параметры;

□ Standard – загружаются стандартные параметры;

□ AI Overclock (Overclock Profile) – система будет разогнана на величину, заданную с помощью параметра Overclock Options (возможные варианты – от 3 до 10 %);

□ AI N.O.S. (Non-Delay Overclocking System) – используется технология динамического разгона, аналогичная D.O.T. Более детально настраивается с помощью параметра N.O.S. Option; в зависимости от модели платы вы можете установить уровень разгона в процентах или чувствительность системы динамического разгона.

AI Overclock Tuner

Параметр служит для выбора режима разгона в ряде новых плат от ASUS.

Возможные значения:

□ Auto – автоматическая настройка параметров (режим по умолчанию);

□ Х.М.Р. – настройка работы памяти соответственно стандарту Intel Extreme Memory Profile (X.M.P.). Этот стандарт также должен поддерживаться модулями памяти, а для выбора текущего профиля памяти используется параметр extreme Memory Profile;

□ D.O.C.P. – при выборе этого значения вы можете задать желаемый режим работы оперативной памяти с помощью дополнительного параметра DRAM О.С. Profile, а базовая частота (BCLK) и коэффициенты умножения для памяти и процессора будут подобраны автоматически;

□ Manual – все параметры разгона настраиваются вручную.

Robust Graphics Booster (LinkBoost)

Параметр позволяет ускорить работу видеосистемы, увеличивая тактовые частоты видеоадаптера.

Возможные значения:

□ Auto – видеосистема работает в обычном режиме на тактовых частотах по умолчанию;

□ Fast, Turbo – видеосистема работает на повышенных частотах, благодаря чему производительность немного повышается (особенно в режиме Turbo).

Intel Turbo Boost

Параметр позволяет включить технологию динамического разгона процессоров семейства Intel Core i7/5. Технология Intel Turbo Boost дает возможность автоматически увеличивать частоту процессора при загруженности одного или нескольких ядер и отсутствии перегрева процессора. Возможные значения:

□ Enabled – технология Turbo Boost включена. При загруженности всех ядер множитель процессора может быть автоматически увеличен на 1-2 ступени, что соответствует поднятию тактовой частоты на 133 или 266 МГц. Если загружено только одно ядро, частота процессора может быть увеличена на две ступени и более, в зависимости от модели процессора;

□ Disabled – режим Turbo Boost отключен.

Параметры разгона процессора

Как известно, каждый процессор работает на некоторой частоте, которая указана в его технической характеристике и определяется как произведение базовой частоты на коэффициент умножения.

CPU Clock Ratio (CPU Ratio Selection, Multiplier Factor, Ratio CMOS Setting)

Параметр устанавливает коэффициент умножения для центрального процессора. Большинство современных процессоров позволяют только уменьшать его или вообще не реагируют на изменение коэффициента. Однако в ассортименте производителей имеются модели с разблокированным множителем (например, серия Black Edition у AMD), которые можно легко разогнать, просто повысив множитель. Возможные значения:

□ Auto – коэффициент умножения устанавливается автоматически в зависимости от процессора;

□ 7.0Х, 7.5Х, 8.0X, 8.5Х, 9.0X, 9.5Х и т. д. – выбрав одно из указанных значений, можно заставить процессор работать с особым коэффициентом умножения, в результате чего его тактовая частота будет отличаться от паспортной.

CPU Host Clock Control (CPU Operating Speed)

Параметр включает ручное управление частотой FSB (BCLK) и коэффициентом умножения, что может понадобиться при разгоне. Возможные значения:

□ Disabled или Auto Detect – тактовая частота процессора устанавливается автоматически; это значение следует выбирать для работы системы в обычном, неразогнанном режиме;

□ Enabled (On) или User Define – тактовая частота процессора может быть изменена вручную с помощью параметра CPU FSB Clock (это значение используется при разгоне).

CPU FSB Clock (CPU Host Frequency (MHz), FSB Frequency, External Clock)

Параметр устанавливает частоту системной шины FSB, или внешнюю частоту центрального процессора, с которой синхронизируются все остальные частоты. Изменение частоты FSB – основной способ разгона процессоров, а диапазон и шаг регулировки зависит от чипсета и модели системной платы.

Если вы не собираетесь разгонять компьютер, установите для этого параметра значение Auto либо отключите ручную настройку для режима работы процессора с помощью параметра CPU Operating Speed или аналогичного.

BCLK Frequency (Base Clock)

Параметр используется в системах на базе процессоров Core i3/5/7 и позволяет изменять базовую частоту, от которой зависят рабочие частоты процессора, шины QPI, оперативной памяти и ее контроллера. Штатное значение базовой частоты – 133 МГц, а шаг и диапазон регулировки зависят от модели платы. Для доступа к этому параметру может понадобиться включить ручную настройку частоты с помощью параметра Base Clock Control или аналогичного.

QPI Frequency (QPI Link Speed)

Параметр позволяет установить частоту шины QPI, которая используется для связи процессора Core i3/5/7 с чипсетом.

Возможные значения:

□ Auto – частота QPI устанавливается автоматически в соответствии с паспортными параметрами процессора;

□ хЗб, х44, х48 – множитель, определяющий частоту QPI относительно базовой (133 МГц);

□ 4800, 5866, 6400 – в некоторых платах вместо множителя может использоваться числовое значение частоты в мегагерцах.

CPU/NB Frequency (Adjust CPU-NB Ratio)

Параметр позволяет устанавливать частоту встроенного в процессор AMD контроллера памяти. В зависимости от модели платы в качестве значений может использоваться частота в мегагерцах или множитель относительно базовой частоты.

CPU Voltage Control (CPU VCore Voltage)

С помощью этого параметра можно вручную изменить напряжение питания центрального процессора, что иногда нужно при разгоне. Возможные значения:

□ Auto (Normal) – напряжение питания процессора устанавливается автоматически в соответствии с его паспортными параметрами;

□ числовое значение напряжения в диапазоне от 0,85 до 1,75 В (в зависимости от модели системной платы диапазон и шаг регулировки могут быть другими).

В некоторых платах для этих же целей используется параметр CPU Over Voltage, который позволяет увеличивать напряжение относительно паспортного на заданную величину.

ВНИМАНИЕ

Чрезмерно высокое питающее напряжение может вывести процессор из строя. Для большинства современных процессоров допустимым является увеличение напряжения на 0,2-0,3 В.

Дополнительные напряжения процессора

Современные процессоры, кроме вычислительных ядер, могут содержать кэш-память, контроллер оперативной памяти и другие компоненты. Для них в некоторых платах имеется возможность настраивать напряжение питания и уровни сигналов, но их влияние на стабильность разогнанной системы обычно невелико. Вот несколько подобных параметров:

□ CPU VTT Voltage – напряжение питания контроллера шины QPI и кэшпамяти L3 (Intel Core i3/5/7);

□ CPU PLL Voltage – напряжение питания схемы фазовой автоподстройки частоты. Этот параметр актуален для четырехъядерных процессоров Intel;

□ CPU/NB Voltage – напряжение питания контроллера памяти и кэшпамяти L3 в процессорах AMD;

□ CPU Differential Amplitude (CPU Amplitude Control, CPU Clock Drive) – регулировка амплитуды сигналов процессора;

□ Load-Line Calibration – включение этого параметра позволит улучшить стабильность напряжения питания при большой нагрузке на процессор.

Advanced Clock Calibration (NVidia Core Calibration)

Этот параметр предназначен для улучшения разгонного потенциала процессоров Phenom и Athlon. Технология Advanced Clock Calibration (АСС) поддерживается в новых чипсетах для процессоров AMD и позволяет выполнять автоматическую подстройку рабочей частоты и напряжения питания процессора.

Возможные значения:

□ Disable – технология АСС отключена, это значение рекомендуется для штатного (неразогнанного) режима работы;

□ Auto – технология АСС работает в автоматическом режиме, это значение рекомендуется при разгоне;

□ All Cores – при выборе данного значения вы сможете установить с помощью параметра Value уровень АСС в процентах для всех ядер одновременно;

□ Per Core – в отличие от предыдущего варианта, вы сможете настроить АСС для каждого ядра отдельно. Ручная настройка АСС может понадобиться, если при значении Auto система работает нестабильно.

Данный параметр вызвал огромный интерес у компьютерных энтузиастов, поскольку позволяет разблокировать неактивные ядра и превратить двух– или трехъядерный процессор Athlon/Phenom в четырехъядерный. Подробнее об этом читайте далее.

Параметры разгона оперативной памяти

Оперативная память работает по управляющим сигналам от контроллера памяти, который вырабатывает последовательность сигналов с некоторыми задержками между ними. Задержки необходимы для того, чтобы модуль памяти успел выполнить текущую команду и подготовиться к следующей. Эти задержки называют таймингами и обычно измеряют в тактах шины памяти. Среди всех таймингов наибольшее значение имеют следующие: CAS# Latency (tCL), RAS# to CAS# delay (tRCD), RAS# Precharge (tRP) и Active to Precharge Delay (tRAS).

При настройке BIOS по умолчанию все необходимые параметры памяти задаются автоматически. В каждом модуле памяти есть специальный чип под названием SPD (Serial Presence Detect), в котором записаны оптимальные значения для конкретного модуля. Для разгона следует отключить автоматическую настройку памяти и задавать все параметры вручную, причем при разгоне процессора вам придется не повышать частоту памяти, а, наоборот, понижать ее.

Количество доступных для настройки параметров оперативной памяти может сильно различаться для разных моделей системных плат, даже выполненных на одном и том же чипсете. В большинстве плат есть возможность изменять частоту памяти и основных таймингов, что вполне достаточно для разгона (рис. 6.2). Любители тщательной оптимизации и разгона могут выбрать более дорогую плату с множеством дополнительных настроек, а в самых дешевых платах средства ручной настройки памяти будут ограниченными или отсутствовать вообще. Параметры оперативной памяти могут находиться в разделе с настройками разгона, в разделе Advanced Chipset Features или в одном из подразделов раздела Advanced.


Рис. 6.2. Основные параметры оперативной памяти


DRAM Timing Selectable (Timing Mode)

Это основной параметр для настройки оперативной памяти, с помощью которого выбирается ручной или автоматический режим установки параметров.

Возможные значения:

□ By SPD (Auto) – параметры модулей памяти устанавливаются автоматически с помощью данных из чипа SPD; это значение по умолчанию, и без особой необходимости менять его не следует;

□ Manual – параметры модулей памяти устанавливаются вручную; при выборе этого значения можно изменять установки рабочих частот и таймингов.

Configure DRAM Timing by SPD (Memory Timing by SPD)

Смысл этих параметров полностью аналогичен рассмотренному выше DRAM Timing Selectable, а возможные значения будут такими:

□ Enabled (On) – параметры оперативной памяти устанавливаются автоматически в соответствии с данными SPD;

□ Disabled (Off) – оперативная память настраивается вручную.

Memory Frequency (DRAM Frequency, Memclock Index Value, Max Memclock)

Параметр отображает или устанавливает частоту работы оперативной памяти. Эта частота в большинстве случаев задается автоматически в соответствии с информацией из SPD. Настраивая частоту вручную, можно заставить память ускориться, однако далеко не каждый модуль при этом будет работать стабильно.

Возможные значения:

□ Auto – частота оперативной памяти устанавливается автоматически в соответствии с данными SPD (по умолчанию);

□ 100, 120, 133 (РС100, РС133) – возможные значения для памяти SDRAM;

□ 200, 266, 333, 400, 533 (DDR266, DDR333, DDR400, DDR533) – возможные значения для памяти DDR;

□ DDR2-400, DDR2-566, DDR2-667, DDR2-800, DDR2-889, DDR2-1067 – значения для памяти DDR2;

□ DDR3-800, DDR3-1066, DDR2-1333, DDR2-1600 – значения для памяти DDR3.

В некоторых платах этот параметр доступен только для чтения, а для изменения частоты памяти следует использовать параметр System Memory Multiplier.

System Memory Multiplier (FSB/Memory Ratio)

Определяет соотношение (множитель) между частотой FSB (BCLK) и частотой памяти.

Возможные значения:

□ Auto – соотношение между частотой FSB (BCLK) и частотой памяти настраивается автоматически в соответствии с данными SPD;

□ соотношение (например, 1:1, 1:2, 3:2, 5:4) или множитель (2, 2,5, 2,66, 3,00, 3,33, 4,00 и т. д.), определяющий связь между частотой FSB (BCLK) и частотой памяти. Конкретный набор значений зависит от типа чипсета и модели платы.

Ручная установка множителя применятся при разгоне, в этом случае множитель (соотношение) понижают, чтобы он не вышел за допустимые пределы при поднятии базовой частоты. Контролировать фактическое значение частоты памяти вы можете с помощью информационного параметра Memory Frequency или диагностических утилит, например CPU-Z (www.cpuid.com) или EVEREST.

CAS# Latency (tCL, DRAM CAS# Latency)

Параметр устанавливает задержки между подачей сигнала выборки столбца (CAS#) и началом передачи данных.

Возможные значения этого параметра зависят от типа используемых модулей и модели платы. Для памяти DDR диапазон регулировки может составлять от 1,5 до 3 тактов, для DDR2 – от 3 до 7 тактов, для DDR3 – от 4 до 15 тактов. При уменьшении значения CAS# Latency работа памяти будет ускоряться, однако далеко не все модули могут стабильно работать при низких задержках.

RAS# to CAS# delay (tRCD, DRAM RAS-to-CAS Delay)

Параметр изменяет время задержки между сигналом выборки строки (RAS#) и сигналом выборки столбца (CAS#).

Диапазон регулировки зависит от модели платы и может составлять от 1 до 15 тактов. Чем меньше значение, тем быстрее доступ к ячейке, однако, как и в случае с CAS# Latency, слишком низкие значения приведут к нестабильной работе памяти.

RAS# Precharge (tRP, DRAM RAS# Precharge, SDRAM RAS# Precharge, Row Precharge Time)

Параметр задает минимально допустимое время, чтобы подзарядить строку после ее закрытия.

Возможные значения – от 1 до 15. При меньших значениях память работает быстрее, но слишком низкие могут привести к ее нестабильности.

Active to Precharge Delay (tRAS, DRAM RAS# Activate to Precharge, Min RAS# Active Time)

Параметр устанавливает минимальное время между командой активизации строки и командой закрытия, то есть время, в течение которого строка может быть открыта.

Диапазон регулировки зависит от модели платы и может составлять от 1 до 63 тактов. Нет однозначной зависимости между значением этого параметра и производительностью памяти, поэтому для максимального эффекта следует подбирать tRAS экспериментально.

DRAM Command Rate (1Т/2Т Memory Timing)

Параметр устанавливает задержку при передаче команд от контроллера к памяти.

Возможные значения:

□ 2Т (2Т Command) – величина задержки равна двум тактам, что соответствует меньшей скорости, но большей надежности работы памяти;

□ IT (IT Command) – задержка в один такт увеличивает скорость оперативной памяти, однако не всякая система может при этом нормально работать.

В некоторых версиях BIOS встречается параметр 2Т Command, при включении которого устанавливается задержка в два такта, а при отключении – в один такт.

Extreme Memory Profile (Х.М.Р.)

Параметр позволяет включить поддержку расширенных профилей памяти. Данная технология разработана компанией Intel и предполагает запись в чип SPD дополнительных наборов параметров для работы на повышенной частоте или с минимальными задержками. Для использования этой технологии она должна поддерживаться вашим модулем памяти.

Возможные значения:

□ Disabled – память работает в штатном режиме;

□ Profile!, Profile2 – выбор одного из профилей памяти с повышенной производительностью. Чтобы узнать параметры этих профилей, следует обратиться к подробной спецификации вашего модуля.

Дополнительные параметры памяти

Как уже отмечалось, в некоторых системных платах имеются дополнительные параметры памяти. Они оказывают меньшее влияние на производительность, чем рассмотренные выше основные тайминги, поэтому их в большинстве случаев следует оставить по умолчанию. Если же у вас есть время и желание экспериментировать, с их помощью можно немного повысить скорость работы памяти. Чаще всего встречаются следующие параметры:

□ tRRD (RAS to RAS delay) – задержка между активизацией строк разных банков;

□ tRC (Row Cycle Time) – длительность цикла строки памяти;

□ tWR (Write Recovery Time) – задержка между завершением операции записи и началом предзаряда;

□ tWTR (Write to Read Delay) – задержка между завершением операции записи и началом операции чтения;

□ tRTP (Precharge Time) – интервал между командами чтения и предварительного заряда;

□ tRFC (ROW Refresh Cycle Time) – минимальное время между командой обновления строки и командой активизации или другой командой обновления;

□ Bank Interleave – определение режима чередования при обращении к банкам памяти;

□ DRAM Burst Length – определение размера пакета данных при чтении из оперативной памяти;

□ DDR Clock Skew (Clock Skew for Channel А/В) – регулировка смещения тактовых сигналов для модулей памяти.

ВНИМАНИЕ

Изменение таймингов памяти может привести к нестабильной работе компьютера, поэтому при первом же сбое следует установить тайминги по умолчанию.

DDR/DDR2/DDR3 Voltage (DDR/DDR2/DDR3 OverVoltage Control, Memory Voltage)

Параметр увеличивает напряжение питания чипов оперативной памяти для их более устойчивой работы на повышенных частотах. При выборе значения Auto (Default) для чипов памяти будет установлено стандартное напряжение питания, которое составляет 2,5 В для памяти DDR, 1,8 В – для DDR2 и 1,5 В – для DDR3.

Для более эффективного разгона оперативной памяти вы можете несколько увеличить напряжение питания, выбрав одно из предлагаемых значений. Диапазон и шаг регулировки зависят от модели платы, а в качестве значений могут применяться как абсолютные, так и относительные значения напряжений.

В некоторых платах могут присутствовать дополнительные параметры для настройки опорных напряжений отдельно для каждого канала памяти, например Ch-A/B Address/Data VRef. Практически всегда для них следует устанавливать значение Auto, а их подстройка может понадобиться только при экстремальном разгоне.

ВНИМАНИЕ

Во избежание необратимых повреждений модулей памяти не выставляйте чрезмерно высоких значений напряжений, а также позаботьтесь о более эффективном охлаждении модулей.

Введение

Наши читатели наверняка знакомы с потенциалом разгона процессоров AMD Phenom II. Мы опубликовали немало тестов, обзоров и сравнений, различных детальных руководств, которые позволяют получить схожие результаты дома (например, " ").

Но для наших тестов на платформах Socket AM2+ или AM3, разгона процессоров AMD с экстремальным охлаждением жидким азотом мы использовали модели Black Edition Phenom II, и на то была хорошая причина. Эти процессоры с разблокированными множителями специально нацелены на энтузиастов, которые желают выжать максимум производительности из купленного CPU.

Но на этот раз мы уделим внимание разгону процессора с заблокированным множителем. И для нашей задачи мы взяли трёхъядерный AMD Phenom II X3 710, который стоит около $100 () и штатно работает на частоте 2,6 ГГц. Конечно, нельзя сказать, что процессору не хватает производительности в штатном режиме, да и три ядра обеспечивают хороший потенциал. Однако множитель процессора заблокирован, поэтому разгонять его не так легко, как модели Black Edition (модель Phenom II X3 720 Black Edition с разблокированным множителем работает на 2,8 ГГц и стоит от 4000 руб. в России).

Что такое процессор с заблокированным множителем? Вы не сможете увеличить множитель выше штатного значения, а также, в случае процессоров AMD, ещё и напряжение CPU VID (voltage ID).

Давайте посмотрим на стандартную формулу: тактовая частота = множитель CPU x базовая частота. Поскольку множитель CPU мы повышать не можем, то придётся работать с базовой частотой. Она, в свою очередь, приведёт к повышению частоты интерфейса HT (HyperTransport), северного моста и памяти, поскольку все они зависят от базовой частоты. Если вы хотите обновить терминологию или схемы расчёта частот, мы рекомендуем обратиться к статье "Разгон процессоров AMD: руководство THG ".

Для охлаждения розничной версии процессора Phenom II мы решили отказаться от "коробочного" кулера в комплекте поставки и взяли Xigmatek HDT-S1283. Однако в надежде разогнать процессор так же сильно, как и модель Black Edition, мы хотели найти материнскую плату, способную выдать высокую базовую частоту. По итогам нашего сравнительного тестирования материнских плат для процессоров AMD победителем в этой области вышла MSI 790FX-GD70, поэтому она должна позволить нам дойти до пределов процессора AMD с воздушным охлаждением.


В данной статье мы детально рассмотрим разные способы разгона процессора с заблокированным множителем, включая обычный разгон через BIOS, через утилиту AMD OverDrive и через фирменную функцию MSI OC Dial у материнской платы 790FX-GD70. Мы подробно рассмотрим все три способа, сравним их лёгкость и полученные результаты. Наконец, мы проведём небольшие тесты производительности, чтобы оценить выигрыш от разгона CPU, северного моста (NB) и памяти.

В каждом сценарии разгона мы сначала отключали Cool’n’Quiet, C1E и Spread Spectrum в BIOS.

Это не всегда требуется, но во время определения максимальной базовой частоты лучше все эти функции отключить, чтобы не разбираться в причинах неудачного разгона. При повышении базовой частоты наверняка придётся снижать множители CPU, NB и HT, а также частоту памяти, чтобы все эти частоты не достигли предельного значения. Мы будем увеличивать базовую частоту с небольшим шагом, после чего будем проводить тесты стабильности. В BIOS 790FX-GD70 MSI называет базовую частоту HT "CPU FSB Frequency".

Таков был наш план, но сначала мы хотели посмотреть, что может сделать опция "Auto Overclock" в BIOS со штатной базовой частотой 200 МГц. Мы выставили эту опцию в "Find Max FSB" и сохранили изменения BIOS. Затем система прошла через короткий цикл перезагрузок, и через 20 секунд загрузилась с впечатляющим значением базовой частоты 348 МГц!




Нажмите на картинку для увеличения.

После успешного подтверждения стабильной работы системы на таких настройках мы поняли, что значение базовой частоты не будет ограничением для данной комбинации CPU и материнской платы.



Теперь настало время начать разгон процессора. В меню Cell мы выставили значения обратно на штатные. Затем мы установили множитель 8x для "CPU-Northbridge Ratio" и "HT Link speed". Делитель FSB/DRAM был понижен до 1:2.66, задержки памяти были вручную выставлены на 8-8-8-24 2T.



Нажмите на картинку для увеличения.

Зная, что CPU будет стабильно работать на 3,13 ГГц (348 x 9), мы сразу же перешли к базовой частоте 240 МГц, после чего успешно прошли тест стабильности. Затем мы стали повышать базовую частоту с шагом 5 МГц и каждый раз тестировать стабильность системы. Самая высокая базовая частота, которую мы получили при штатном напряжении - 265 МГц, что дало нам впечатляющий разгон 3444 МГц без увеличения напряжения.




Нажмите на картинку для увеличения.

Снижение множителя HT до 7x не позволило увеличить разгон, так что настало время поднять напряжение. Как мы уже упоминали выше, значение CPU Voltage ID заблокировано и не может быть поднято выше 1,325 В, поэтому в BIOS можно выставить CPU VDD Voltage от 1,000 до 1,325 В или установить автоматическое значение "Auto". Впрочем, напряжение CPU у материнской платы всё же можно менять, устанавливая смещение относительно CPU VID. Смещение (offset) задаётся в BIOS MSI параметром "CPU Voltage", там для процессора с VDD 1,325 В доступны значения 1,005-1,955 В.

Мы установили довольно скромное напряжение CPU 1,405 В, после чего продолжили наращивать базовую тактовую частоту с шагом 5 МГц, достигнув максимального стабильного значения 280 МГц, что дало частоту процессора 3640 МГц, частоту HT Link 1960 МГц, частоту северного моста 2240 МГц и 1493 МГц для памяти DDR3. Вполне нормальные значения для продолжительного использования системы 24x7, но мы хотели достичь лучшего.

Мы продолжили тесты, снизив множитель северного моста до 7x, после чего увеличили напряжение CPU до 1,505 В. Реальное значение напряжения CPU падало до 1,488 В во время тестов под нагрузкой. При данном напряжении процессор Phenom II X3 710 достиг стабильной частоты 3744 МГц при базовой частоте 288 МГц. В нашем открытом стенде температура CPU во время стрессового тестирования Prime95 находилась около 49 градусов Цельсия, то есть на 25 градусов выше нашей комнатной температуры.




Нажмите на картинку для увеличения.

Если вы не знакомы с утилитой AMD OverDrive, то мы рекомендуем ознакомиться со статьёй "Разгон процессоров AMD: руководство THG ". Сегодня же мы сразу перейдём в расширенный режим (Advanced mode) к меню "Performance Control".



Нажмите на картинку для увеличения.

Разгон процессора Black Edition через утилиту AOD (AMD OverDrive) довольно простой, но сейчас мы имеем дело с заблокированным множителем. Сначала нам нужно снизить множители NB и HT, а также и делитель памяти. Параметры "CPU NB Multiplier" на закладке "Clock/Voltage", а также и "Memory Clock" на закладке "Memory" подсвечены красным, то есть они будут меняться только после перезапуска системы. Помните, что частота HT Link не может быть выше частоты северного моста, и изменения этих "белых" множителей не выполняются автоматически после перезагрузки, в отличие от "красных" значений. Мы избежали этой проблемы, заранее выполнив изменения всех этих значений в BIOS.


Нажмите на картинку для увеличения.

Мы довольно быстро обнаружили, что изменения базовой частоты с помощью утилиты AOD не выполняются даже после нажатия клавиши “Apply”. Это можно видеть, если сравнить "Target Speed" и "Current Speed".

Чтобы начать разгон, в BIOS необходимо сначала изменить значение базовой частоты на любое относительно 200 МГц по умолчанию. Подойдёт любое значение, поэтому мы просто выставили 201 МГц.



Нажмите на картинку для увеличения.

Сделав упомянутую подготовку к разгону, мы начали повышать частоту HT с помощью AOD с шагом 10 МГц. Всё было замечательно, пока мы неожиданно не упёрлись в порог 240 МГц. После чего система либо "висла", либо перезапускалась. Мы сделали тонкую настройку, после чего обнаружили, что проблема начинается после 238 МГц. Решением оказалось выставление базовой частоты 240 МГц в BIOS. Затем мы поднимали базовую частоту HT с шагом 5 МГц, после чего вновь упёрлись в уровень 255 МГц. После выставления в BIOS 256 МГц и загрузки мы смогли получить такую же максимальную частоту на штатном напряжении, как и раньше.


Нажмите на картинку для увеличения.

Обратите внимание, что из-за блокировки процессора движок CPU VID уже выставлен в максимум 1,3250 В. Чтобы поднять напряжение CPU, нужно использовать движок CPU VDDC, задающий напряжение смещения. Кроме выставления 1,504 В у CPU VDDC, мы увеличили напряжения NB VID и NB Core до 1,25 В. Это позволило повышать базовую частоту HT до уровня 288 МГц без каких-либо проблем.


Нажмите на картинку для увеличения.


Нажмите на картинку для увеличения.

Помимо довольно богатых регулировок множителя и напряжения в BIOS, у материнской платы MSI 790FX-GD70 есть другие функции, дружественные к оверклокерам. Обратите внимание на клавиши и ручку OC Dial, расположенные на нижней части платы. Клавиши питания и сброса будут полезны для тех, кто тестирует систему за пределами корпуса ПК, да и вдавленная клавиша очистки CMOS (Clr CMOS) тоже удобнее, чем обычная перемычка. Функция MSI OC Dial состоит из ручки OC Drive и клавиши OC Gear. Они позволяют изменять базовую частоту в реальном времени.



Функция OC Dial активируется через меню "Cell" в BIOS. Шаг OC Dial Step можно повышать, если нужно, но мы использовали шаг по умолчанию 1 МГц. Значение "OC Dial Value" указывает изменения, сделанные с помощью ручки OC Drive. Значение "Dial Adjusted Base Clock" указывает на текущую базовую частоту, то есть на сумму значений FSB Clock + OC Dial.

Опять же, мы подготовились к разгону, снизив в BIOS значения множителей NB и HT, а также и делитель памяти. Ручку OC Drive можно крутить, находясь на экране BIOS, но под операционной системой клавиша OC Gear служит в качестве переключателя. После удерживания OC Gear на протяжении секунды появится индикация, и ручка OC Drive начнёт работать. У ручки всего 16 положений, что позволяет за один поворот увеличить базовую частоту на 16 МГц. После завершения регулировок повторное нажатие OC Gear выключает функцию, что и рекомендуется сделать в целях защиты стабильной работы.

Мы начали разгон, поворачивая ручку OC Drive и отслеживая значение базовой частоты и других частот в CPU-Z. Однако после очередного изменения система автоматически перегрузилась. Войдя в BIOS, мы обнаружили, что перезагрузка произошла после такого же значения базовой частоты 239 МГц, с которым у нас возникли проблемы в AMD OverDrive.

После этого небольшого сбоя система без проблем загрузилась в Windows на базовой частоте 239 (200 + 39) МГц. Мы продолжили увеличивать значение OC Dial плоть до 65 МГц, затем уже требовалось повышение напряжения.

Мы повысили напряжения и снизили множители. Под Windows мы управляли ручкой OC Dial с шагом 10 МГц. Система начала "вылетать" после достижения базовой частоты 286 МГц, при этом ОС отказывалась загружаться при значении "OC Dial Value" больше 86 МГц.

После выставления частоты CPU FSB до уровня 250 МГц мы вновь загрузили ОС. На этот раз мы смогли увеличить значение базовой частоты с помощью ручки "OC Dial" вплоть до нашего максимального стабильного уровня 288 МГц.

Выжимаем больше производительности: тонкая настройка

С процессором Phenom II X3 710, работающем на приличной тактовой частоте 3744 МГц, настало время выжать ещё немного производительности из системы.

Мы начали с разгона северного моста, что позволяет повысить производительность контроллера памяти и кэша L3. Выставив напряжение "CPU-NB Voltage" на уровень 1,3 В и "NB Voltage" на 1,25 В, мы смогли увеличить множитель северного моста с 7x до 9x, что дало частоту северного моста 2592 МГц.

Дальнейшее повышение напряжений всё равно не позволило загрузить Windows с множителем 10x NB. Помните, что из-за базовой частоты 288 МГц каждое увеличение множителя NB приводит к повышению частоты северного моста на 288 МГц. Радиатор чипсета оставался довольно холодным при прикосновении, но достижение частоты 2880 МГц у северного моста наверняка потребовало бы более сильного увеличения напряжения CPU-NB, чем мы хотели. В этом отношении процессоры Black Edition, конечно, дают большую гибкость. Используя комбинацию множителя и другой базовой частоты, мы смогли бы получить более высокую тактовую частоту северного моста при схожем разгоне CPU. Например, при базовой частоте 270 МГц система полностью стабильно работала с северным мостом на 2700 МГц, но без возможности увеличения множителя разгон CPU падал до чуть более 3500 МГц.

Конечно, можно получить небольшой прирост производительности, увеличив частоту интерфейса HT Link, но 2,0 ГГц уже предоставляет достаточно пропускной способности для подобной системы. Здесь увеличение множителя HT до 8x даст повышение тактовой частоты интерфейса HT Link на 288 МГц, что приведёт к 2304 МГц - выше, чем мы обычно устанавливаем, да и наверняка стабильность будет потеряна.

Вместо траты времени на увеличение частоты HT Link, мы решили разогнать память. В данном случае делитель 1:3,33 приведёт к работе наших модулей Corsair DDR3 на слишком высокой частоте 1920 МГц, поэтому мы решили заняться задержками. Мы обнаружили, что задержки 7-7-7-20 дают полностью стабильную работу в тестах Memtest 86+, Prime95 и 3DMark Vantage. К сожалению, параметр Command Rate 1T дал стабильные четыре цикла Memtest 86+ без ошибок, но привёл к потере стабильности в 3D-тестах. Итог нашего тонкого разгона показан на следующем скриншоте.



Нажмите на картинку для увеличения.

Хотя мы вручную выставляли задержки памяти для нынешнего теста разгона, дополнительные тесты показали, что настройки "Auto" на результат не влияют. С делителем памяти 1:2,66 выставление задержек DRAM Timing в BIOS в положение "Auto" привело к режиму 9-9-9-24. Что интересно, задержки "Auto" с делителем 1:2 привели к режиму 6-6-6-15, причём на данной частоте параметр 1T Command Rate давал стабильную работу.

В тестах производительности мы отдельно рассмотрим наши усилия разгона. Сначала мы посмотрим, какой прирост производительности даёт увеличение частоты только северного моста, затем мы изучим влияние частоты памяти и задержек на производительность.

Тестовая конфигурация

Аппаратное обеспечение
Процессор AMD Phenom II X3 710 (Heka), 2,6 ГГц, 2000 МГц HT, кэш L3 6 Мбайт
Материнская плата MSI 790FX-GD70 (Socket AM3), 790FX / SB750, BIOS 1.3
Память 4,0 Гбайт Corsair TR3X6G1600C8D, 2 x 2048 Мбайт, DDR3-1333, CL 8-8-8-24 на 1,65 В
Жёсткий диск Western Digital Caviar Black WD 6401AALS, 640 Гбайт, 7200 об/мин, кэш 32 Мбайт, SATA 3,0 Гбит/с
Видеокарта AMD Radeon HD 4870 512MB GDDR5, 750 МГц GPU, 900 МГц GDDR5
Блок питания Antec True Power Trio 550 Вт
Кулер Xigmatek HDT-S1283
Системное ПО и драйверы
ОС Windows Vista Ultimate Edition, 32-bit, SP1
Версия DirectX Direct X 10
Драйвер дисплея Catalyst 9.7

Тесты и настройки

3D-игры
World In Conflict Patch 1009, DirectX 10, timedemo, 1280x1024, Very High Details, No AA / No AF
Приложения
Autodesk 3ds Max 2009 Version: 11.0, Rendering Dragon Image at 1920x1080 (HDTV)
Синтетические тесты
3DMark Vantage Version: 1.02, Performance Preset, CPU score
Sisoftware Sandra 2009 SP3 Version 2009.4.15.92, CPU Arithmetic, Memory Bandwidth

Режимы разгона
Stock (штатный) Stock VCore OC (штатный без подъёма напряжения) Max OC (максимальный с подъёмом напряжения) Tweaked OC (максимальный после тонкой настройки)
Частота ядра CPU 2600 МГц 3444 МГц 3744 МГц 3744 МГц
Частота северного моста 2000 МГц 2120 МГц 2016 МГц 2592 МГц
Частота HT Link 2000 МГц 2120 МГц 2016 МГц 2016 МГц
Частота и задержки памяти DDR3-1333, 8-8-8-24 2T DDR3-1412, 8-8-8-24 2T DDR3-1546, 8-8-8-24 2T DDR3-1546, 8-8-8-24 2T

Результаты производительности

Данная статья планировалась больше как руководство по разгону, а не как тест производительности. Но мы всё равно решили провести несколько тестов, чтобы показать прирост производительности после наших усилий по разгону. Обратите внимание на таблицу выше, где приведена подробная расшифровка каждой тестовой конфигурации.

В арифметическом тесте Sandra Arithmetic результаты увеличиваются после повышения тактовой частоты CPU, причём тонкая настройка разгона (Tweaked OC) не показала какого-либо преимущество от разогнанного северного моста.

С другой стороны, разгон северного моста даёт серьёзный прирост по пропускной способности памяти. Тонкий разгон (Tweaked OC) лидирует, а чуть меньшая частота северного моста при максимальном разгоне (Max CPU OC) дала меньшие результаты, чем при разгоне со штатным напряжением (Stock Vcore OC).

Разгон нашего процессора Phenom II привёл к заметному повышению результатов теста CPU в 3DMark Vantage. Дополнительная пропускная способность из-за разгона северного моста заметно подняла результат.

Игра World in Conflict очень сильно зависит от производительности CPU. Мы тестировали её на низком разрешении без сглаживания, что позволило выставить нам очень высокую детализацию, но при этом мы не упёрлись в производительность GPU Radeon HD 4870. Неудивительно, что по мере повышения частоты CPU мы получаем прирост минимальной и средней частоты кадров (fps). Но обратите внимание на существенно лучшую минимальную частоту кадров после разгона северного моста. Производительность контроллера памяти и кэша L3 очень важны для этой игры, поскольку разгон северного моста дал такой же прирост 6 fps по минимальной частоте кадров, что и разгон CPU на 1100 МГц.

Разгон CPU серьёзно снизил время рендеринга в 3ds Max 2009. Пропускная способность памяти здесь не так важна, поскольку разгон северного моста дал выигрыш всего на одну секунду.

Все тесты производились после выставления в BIOS задержек 8-8-8-24 2T. На диаграммах мы использовали настройки тонкого разгона "Tweaked PC" с частотами 3744 МГц для ядра, 2592 МГц для северного моста и 2016 МГц для интерфейса HT. Мы протестировали четыре стабильных режима работы памяти, о которых мы говорили в статье.

В арифметическом тесте CPU мы не наблюдаем никакой разницы. Впрочем, низкие задержки оказались чуть лучше, чем высокая частота работы.

Здесь мы видим, что пропускная способность увеличилась после повышения частоты работы памяти. С делителем 2,66 мы видим очень небольшую разницу между режимами "Auto" (CAS 9), CAS 8 и низких задержек CAS 7.

Здесь в лидерах два наших ручных режима, хотя разница в тесте 3DMark Vantage CPU мизерная.

Масштабирование в World in Conflict кажется почти идеальным, лидируют минимальные задержки, которые дали прирост в 1 fps по минимальной и средней частоте кадров. Обратите внимание на заметное падение минимальной частоты кадров при снижении частоты памяти.

Более жёсткие задержки памяти на разогнанной системе не дали выигрыша по времени рендеринга 3ds Max 2009.


Разгон без увеличения напряжения даёт приятный прирост производительности по сравнению со штатными настройками и при этом намного лучшую эффективность, чем при максимальном разгоне (с повышением напряжения). Кроме того, обратите внимание, что прирост производительности от увеличения частоты северного моста нельзя назвать "бесплатным".

Некоторым читателям нравится выполнять разгон без увеличения множителя, что позволяет включить технологию Cool’n’Quiet без заметной потери стабильности.


Нажмите на картинку для увеличения.

Заключение

Процессор Phenom II X3 710 даёт впечатляющую отдачу для своей цены $100 (). Однако заблокированные значения множителя и напряжения Voltage ID приводят к потере гибкости разгона по сравнению с процессорами Black Edition. Впрочем, если обзавестись материнской платой, дружественной к разгону (например, MSI 790FX-GD70), то X3 710 может дать такую же частоту ядра, что и другие процессоры Phenom II под воздушным охлаждением.

Конечно, ваши результаты разгона могут отличаться. Особенно это касается разгона процессора с заблокированным множителем путём повышения базовой частоты. Если вы планируете разгонять заблокированный процессор Phenom II в условиях минимального бюджета, мы рекомендуем внимательнее относиться к выбору материнской платы, чтобы она позволяла добавлять смещение к напряжению CPU VID и могла выдерживать большую базовую частоту. Впрочем, если вы планируете разгонять процессор на недорогой материнской плате или хотите выжать максимум от CPU на материнской плате для энтузиастов, подобно нашей, лучше доплатить ещё $20 и взять процессор Phenom II X3 720 Black Edition (от 4000 руб. в России), работать с которым намного проще.

Утилита AMD OverDrive была довольно полезна в прошлом для разгона процессоров Black Edition, но в данной конфигурации она уже не такая идеальная. Конечно, ни одну из встреченных нами проблем нельзя назвать критически важной, но мы бы не рекомендовали выполнять сколько-нибудь серьёзный разгон с помощью AMD OverDrive на нашей материнской плате с заблокированным процессором. Впрочем, утилита всё равно полезна для отслеживания напряжений и температур или даже для предварительного тестирования небольших изменений базовой частоты, чтобы потом занести их в BIOS.

Технология MSI OC Dial тоже не безупречна, однако она в нашем случае работала лучше, чем AMD OverDrive. Помимо опции "Auto Overclock" для поиска максимального значения базовой частоты (Max FSB), технология MSI OC Dial позволяет существенно сэкономить время, если нужно быстро изменить значение базовой частоты. Самые большие проблемы будут с тем, как добраться до регулировок MSI OC Dial после установки платы в корпус, поскольку в системах с нижним расположением блока питания и с несколькими видеокартами будет довольно тесно.

В итоге, если рассматривать разгон заблокированного процессора, то нельзя обойти или заменить регулировки через старый добрый BIOS. Благодаря удобной навигации и богатству регулировок множителей и напряжений, плата 790FX-GD70 показала себя с лучшей стороны. Будете ли вы использовать функцию OC Dial или программную утилиту AMD OverDrive, разгон заблокированного процессора Phenom II всё равно начнётся и закончится в BIOS.