Что лучше выбрать плазменный телевизор или жидкокристаллический? Единственного правильного ответа на этот вопрос нет. Все зависит от потребностей покупателя и от тех условий, в которых он будет смотреть телевизор. Вот для того, что бы выбрать нужный вариант покупатель должен знать плюсы и минусы этих технологий.

В последние два года ведущие производители не выпускают телевизоры с плазменными панелями в качестве экрана. В разное время они отказались от плазмы в пользу LED технологии. Еще есть OLED телевизоры. Вот эти две технологии и будут делить рынок в следующие несколько лет.

Как работают жк телевизоры

Принцип работы жк дисплея очень прост, молекулы жидких кристаллов меняют свое положение в пространстве под воздействием электрического тока. Если поместить слой жидких кристаллов после лампы подсветки дисплея можно получить своеобразный электрический переключатель света.

В зависимости от плоскости поляризации свет будет или проходить через жк матрицу или задерживаться, что мы увидим на экране как светлые или темные пиксели. Этих пикселей очень много, при разрешении 4К пикселей на экране 8 миллионов.

Пройдя слой жидких кристаллов, так называемые жалюзи, свет попадает в светофильтр. На каждый пиксель здесь приходится три субпикселя: зеленый, синий и красный. Эти цвета являются основой всего цветного телевидения, потому что, комбинируя их, мы можем получить практически любой оттенок. В результате получаем нужное изображение на экране, вот так и работает lcd телевизор.

Как работают плазменные телевизоры

В свою очередь принцип работы плазменного телевизора заключается в следующем. Каждый пиксель в плазменной панели состоит из трех микроламп с ионизированным газом. К колбочкам с газом подведен электрод, по которому подается напряжение. При электрическом разряде в газе (плазме) происходит излучение ультрафиолета, который заставляет светиться люминофор, покрывающий каждый суб-пиксель. Яркость свечения каждой ячейки зависит от уровня подаваемого напряжения. Таким образом, из трех основных цветов можно получить практически любой оттенок.

Плюсы и минусы

Плазменные телевизоры не могут быть меньше 32 дюймов, это технологическое ограничение. А в основном плазменные телевизоры делают с диагональю 42 дюйма и больше. А жк экраны могут быть от очень маленьких (например, наручные часы) до 100 дюймовых экранов, в реальности LCD телевизоры выпускаются до 80 дюймов.

Первое различие в размерах . Минимальные и максимальные размеры у жк и плазмы разные. При выборе телевизора нужно учитывать размеры комнаты, где будет он стоять. Для небольшой комнаты плазма может быть очень большой, а для зала презентаций уже может не хватить размеров жк телевизора. Но для популярных размеров телевизионных экранов 40-60 дюймов обе технологии подойдут.

Плазма с большой диагональю отлично подойдет для комнаты с большой площадью и оборудованной для домашнего кинотеатра. А для комнаты меньшего размера подойдет лучше жк, ведь в маленькой комнате будут намного заметнее такие недостатки плазменных телевизоров как повышенное тепловыделение и шум от вентиляторов охлаждения.

А некоторые технические характеристики плазменных дисплеев являются избыточными для человеческого восприятия и не являются преимуществом перед жк телевизором. Главное преимущество плазмы остается лучшая контрастность, что влечет за собой и лучшую цветопередачу. Но зато в жк телевизорах большая яркость, особенно у моделей с led подсветкой, и поэтому жк можно смотреть при сильном внешнем освещении, а плазма покажет хорошие результаты в затененных помещениях. Поэтому, если на витрине магазина вы увидите, что плазма показывает хуже жк телевизора, то имейте в виду, что дома у вас, когда вы поставите плазму в комнате, результат может быть намного лучше.

Основным преимуществом плазменных панелей является лучший уровень черного , а потому и лучшая контрастность и лучшая цветопередача . Модели lcd телевизоров, которые по этим параметрам могут конкурировать с плазмой имеют LED подсветку и по стоимости превосходят аналогичные плазменные модели. Угол обзора так же лучше у плазменных телевизоров, и время отклика намного меньше, что дает преимущество при просмотре динамических сцен. С усовершенствованием led подсветки жк телевизоры практически сравнялись по качеству изображения с плазменными.

Проблема выгорания пикселей у плазмы может возникнуть, если на экран подавать статическую картинку, например при подключении к компьютеру или если ставить вместо заставки фотографию. При обыкновенном просмотре проблемы выгоревших пикселей может совсем не возникнуть, а в новых моделях проблема выгорания практически устранена. Как плазма, так и жк телевизоры имеют достаточный запас наработки на отказ, поэтому смотреть на эту характеристику при сравнении этих технологий не обязательно.




Эта информация справедлива на 2014 год. С тех пор плазма ушла с рынка и ее параметры остались такими же, а вот модели с LED подсветкой стали лидерами на рынке телевизоров. Их технические параметры достигли высокого уровня и можно найти модели с прекрасным качеством изображения. Конкуренцию им составляют OLED телевизоры, но их сравнительно мало и они идут по большой цене.

Современный рынок телевизоров очень разнообразен и выбрать подходящую модель по методу “нравится — не нравится” просто невозможно. Многие телевизоры изготовлены по разной технологии, и у каждой есть свои преимущества и недостатки. Поэтому сегодня мы попробуем разобраться с основными параметрами устройства, чтобы вы могли сами определить, какой телевизор лучше — плазма или ЖК или ЛЕД, именно для ваших потребностей.

Что есть что?

Принцип работы самых обычных телевизоров (ЭЛТ) знает каждый человек, который не прогуливал уроки физики. Работает такая техника следующим образом:

  1. Внутри электронно-лучевой трубки электроны выбивают фотоны из люминофора.
  2. В результате такого действия, каждая точка на экране приобретает свой цвет.
  3. Из разноцветных точек и складывается изображение, которое прорисовывается по строкам.

Важно! Весь процесс осуществляется со скоростью 25 кадров в секунду.

Конечно, работа обычных ламповых телевизоров доставляла потребителю определенные проблемы, а именно:

  • Изображение мерцает, а это негативно сказывается на зрении.
  • Электромагнитное излучение — также не добавляет здоровья.
  • Большие габариты устройства, за счет размера трубки, не добавляет комфорта, особенно в малогабаритной квартире.

Важно! Привычные ламповые телевизоры, также уступают современным аналогам и по техническим характеристикам, таким как: контрастность, яркость изображения, угол обзора. Поэтому подобные устройства мало кто приветствует, чаще всего возникает вопрос: какой телевизор лучше — плазма или ЖК или ЛЕД?

Современные телевизионные устройства, в основном, делятся на два вида:

  1. Плазменные.
  2. Жидкокристаллические. Которые, в свою очередь, различаются типом подсветки и подразделяются на:
    • LCD CCFL.

Рассмотрим преимущества и недостатки телевизионных технологий, чтобы разобраться, какой телевизор лучше — ЖК или плазма. Следует отметить, что все лидеры рынка телевизоров выпускают устройства с этими новыми технологиями. В нашем отдельном обзоре вы найдете ТОП лучших марок телевизоров .

Плазменные телевизоры

В основе технологии плазменных устройств лежит матрица, которая заполнена газом (неон или ксенон). Между двумя, приложенными друг к другу, стеклами небольшое пространство заполнено газом, а внутри проходит электрическая сетка из проводов.

Важно! Электроды, получая напряжение, ионизируют газ и превращают его в плазму, вызывая свечение флюоресцирующих элементов. Тысячи таких элементов разного цвета и воспроизводят изображение.

Преимущества плазменной панели очевидны:

  • Изображение не мерцает. Кадры сменяются плавно, не создавая цветовых волн.
  • Высокая контрастность и глубина цвета.
  • Качественная цветовая насыщенность.
  • Натуральная передача движений.
  • Широкий угол обзора (160-170 градусов).
  • Разрешение плазменного устройства идентично разрешению входного канала.
  • Эффектный тонкий корпус.
  • Современный дизайн.
  • Больший выбор моделей с диагональю до 80”.
  • Отсутствие электрических и магнитных полей. Это немаловажно: во-первых — нет угрозы здоровью, а во-вторых — на экран оседает значительно меньше пыли.
  • Все современные модели оснащены компьютерными разъемами. При желании, пользователь может использовать телевизор как дополнительный дисплей для компьютера или ноутбука.

Продолжительный срок службы (около 20 лет).

Недостатки плазменной модели

Чтобы определиться, какой телевизор лучше — плазма или ЖК или ЛЕД, не лишним будет ознакомиться и с недостатками таких, на первый взгляд, идеальных моделей ТВ:

  • Панель имеет склонность к выгоранию. Конечно, для этого нужно постараться, так как панель рассчитана на 30-40 тысяч часов использования, а это 9 лет по 8 часов в день.
  • Видна пикселизация вследствие высоких температур.
  • Высокое потребление электроэнергии. Например, модель с диагональю 42” может использовать до 350 Вт.
  • Немалый вес. Некоторые модели плазменных телевизоров имеют вес до 90 кг, и для их закрепления на стену понадобится мощный кронштейн.

Важно! Чтобы понять, по цене, надо знать следующее:

  1. если выбирать большой размер дисплея, то дешевле будут плазменные модели, так как изготовить большую жидкокристаллическую матрицу намного сложнее, чем плазму;
  2. если выбирать относительно небольшие устройства, то дешевле ЖК-телевизоры.

ЖК- телевизор: LED или LCD?

Принцип работы жидкокристаллического телевизора заключается в следующем:

  1. Между двух панелей находится слой жидких кристаллов.
  2. Кристаллическая проводящая жидкость меняется под воздействием электрического тока.
  3. При напряжении электрического поля жидкий кристалл пропускает через себя определенную часть светового потока: при одном напряжении — пиксель светится красным, при другом — белым, а при третьем — желтым.

Важно! Кристаллическая проводящая жидкость должна подсвечиваться, чтобы зритель мог увидеть изображение.

Именно, по способу подсветки, такой тип устройств делится на:

  • LCD CCFL — жидкокристаллический дисплей, в качестве подсветки флюоресцентная лампа с холодным катодом.
  • LED — диодная подсветка.

Важно! Необходимо знать обозначение телевизоров по принципу устройства, чтобы понять, какой телевизор лучше — плазма или ЖК или ЛЕД :

  1. ЖК и LCD — это синонимы, то есть, русская и английская аббревиатуры соответственно.
  2. А вот LED — это практически тот же ЖК, но с другим типом подсветки .

В чем разница двух видов ЖК- телевизоров?

  1. LED телевизор, благодаря конструкции подсветки, имеет лучшее качество изображения. В телевизорах LCD одна лампа подсвечивает весь экран, а у LED — большое количество светодиодов, благодаря чему удается создать локальное затемнение на одном участке дисплея и одновременно усилить яркость на другом.
  2. LED устройства значительно снижают энергопотребление. Такой тип подсветки позволяет экономить до 40% электроэнергии.
  3. В LED телевизорах не используется ртуть. Данное достоинство позволяет безопасно их утилизировать.
  4. В LED телевизорах используются диоды различного цвета, что позволяет улучшить цветопередачу.

LCD телевизоры исключают пропадание деталей изображения и этим они выигрывают у бюджетных моделей LED, у которых, из-за сложной системы управления диодами, возможно неправильное отображение цвета.

Преимущества ЖК телевизоров

Отметим основные достоинства ЖК телевизоров, чтобы вы смогли понять, какие телевизоры лучше — ЖК или плазма или LED:

  • Правильная геометрия изображения, благодаря плоской поверхности ЖК-панели.
  • Четкое воспроизведение картинки.
  • Экономичность.
  • Низкий уровень шума.
  • Относительно невысокая стоимость.

Важно! Длительный срок службы — одно из неоспоримых достоинств этого типа оборудования. ЖК-телевизоры прослужат в два раза дольше, чем плазменные, так как их срок службы 75000 часов против 30000 часов.

Недостатки ЖК:

  • Меньший угол обзора.
  • Контрастность ниже, чем у плазмы. Черный цвет недостаточно насыщенный.
  • Существует опасность выгорания пикселей.
  • Размеры ЖК-телевизоров значительно меньше, чем LED или плазменных моделей.

Преимущества LED

Модели по технологии LED по своим характеристикам представляют собой что-то среднее между ЖК и плазмой:

  1. Качество картинки изображения намного выше, чем у ЖК-телевизоров.
  2. Электроэнергии потребляют меньше, чем плазменные модели.

Важно! Однако цена на современные модели LED устройств очень высокая и по карману не каждому.

Отметим положительные стороны LED:

  • Высокая контрастность изображения.
  • Высокое качество цветопередачи.
  • Широкий угол обзора (средний показатель 160 градусов).
  • Экономичность.
  • Экологичность.
  • Экран очень легкий, что удобно при монтаже на стену.
  • Компактность. Средняя толщина телевизора — 3 см.
  • Некоторые модели напрямую подключаются к Интернет и способны заменить ПК.

Важно! Единственная причина, по которой LED телевизоры не вытеснили плазму и ЖК — высокая цена. К недостаткам устройства можно отнести и то, что мало среди них моделей с диагональю меньше 40”. Поэтому если вы хотите приобрести небольшой телевизор, то придется выбирать из плазменных моделей или ЖК.

Какой лучше: ЖК или плазма телевизор?

Преимущества плазменной панели достаточно очевидны: не мерцает изображение, ничего в конструкции не угрожает здоровью телезрителей, больше яркости и контрастности, а угол обзора 160 градусов. К недостаткам можно отнести — высокое потребление электроэнергии.

Если вы выбираете технику по эксплуатационным характеристикам, то проанализируйте все достоинства и недостатки двух типов устройств.

Достоинства Плазмы в сравнении с ЖК:

  • Высокая контрастность и глубина цветов.
  • Прекрасная цветовая насыщенность.
  • Большая поверхность экрана.
  • Натуральнее передача движений.

Достоинства ЖК:

  • Экран не выгорает.
  • Угол обзора шире.
  • Ресурс работы, как минимум в два раза больше, чем у Плазмы. По истечению ресурса можно поменять только источник света (лампу), а не весь экран.
  • Малое энергопотребление.

Важно! К недостаткам ЖК-телевизоров, по сравнению с Плазмой можно отнести:

  1. Контрастность цветов подавляет полутона.
  2. Натуральную передачу движений усложняет проблема шлейфа “кадра-призрака”.

Какие телевизоры лучше ЖК или плазма или LED?

Оценив все достоинства и недостатки каждого типа телевизоров, можно подвести следующий итог, чтобы решить, какой телевизор лучше — плазма или ЖК или ЛЕД.

Качество изображения:

1 место — LED.

2 место — Плазма.

3 место — ЖК.

Световой поток (яркость):

1 место — LED.

2 место — ЖК.

3 место — Плазма.

Важно! На сегодняшний день ЖК LED самые яркие. Некоторые модели способны обеспечить яркость более 100 фут-ламберт, а в кинотеатре, если вам повезет, можете получить 5 фут-ламберт.

Уровень черного:

1 место- Плазма.

2 место- LED.

3 место — ЖК.

Контрастность:

1 место — Плазма.

2 место — LED.

3 место — ЖК.

Энергопотребление:

1 место — LED.

2 место — ЖК.

3 место — Плазма.

Важно! В большинстве случаев дизайнеры выделяют для телевизора отдельную стену, делая на нем акцент. Мы подготовили отдельные посты, которые помогут вам со вкусом оформить интерьер помещения:

Срок службы:

1 место — ЖК.

2 место — Плазма.

3 место — LED.

Цена:

Дешевле всех — ЖК.

2 место — Плазма.

3 место — LED.

Определить победителя или аутсайдера, подсчитав баллы из списков выше, практически нельзя, так как эти показатели не равноценны. Для одного человека важен уровень яркости, а для другого — уровень черного превыше всего.

Важно! Может кому-то очень важно, чтобы телевизор служил многие десятилетия, а качество картинки не столь важно, тогда выбор очевиден — ЖК. А если вы киноман, эстет и имеете достаточно средств, то покупайте LED с 3D-изображением.

Видеоматериал

Надеемся, что приведенная информация поможет вам выбрать такой телевизор, который подойдет лично вам и вашей семье, будет радовать вас в свободное время просмотром любимых фильмов и передач. Удачи и качественного видео!

С каждым годом плазменные панели становятся все популярнее среди покупателей, чему в немалой степени поспособствовало их удешевление. По мнению специалистов, в самом ближайшем будущем они полностью вытеснят как морально устаревшие кинескопные телевизоры, так и LCD-модели.

Плазменный телевизор – решение для всех!

Некоторые обыватели считают, что между плазменным и LCD- нет никакой разницы, а различаются они лишь диагональю экрана. На самом деле это далеко не так. Плазменные модели производятся по совершенно иной технологии, не имеющей ничего общего с LCD-экранами. Она основывается на использовании уникальной плазменной матрицы, дающей изображение высокой четкости.

Одно из главных достоинств плазменного – его универсальность. Он сможет удовлетворить не только владельцев , но и геймеров. «Плазма» всегда очень нравится и детям, которые просто обожают мультики на большом экране. Соответственно, такой телевизор ориентирован на достаточно широкую покупательскую аудиторию, а не только на любителей зрелищного кино

Чтобы правильно выбрать плазменный телевизор, обращайте внимание на диагональ экрана

Выбор плазменного телевизора – занятие несложное. Однако при его покупке во внимание необходимо принимать несколько важных нюансов. И в первую очередь, размер экрана телевизора. Стоит отметить, что плазменных моделей с маленькой диагональю просто не существует. Это связано с тем, что выпуск подобных телевизоров не является рентабельным. Чтобы правильно выбрать плазменный телевизор, помните, что минимальный размер его экрана составляет 32 дюйма. Максимальные же размеры современных панелей могут доходить до 72 и даже более дюймов.

От величины диагонали плазменного телевизора зависит и такой важный параметр, как формат экрана. Оптимально для домашнего просмотра подходят модели с форматом 16:9, который позволяет воспроизводить видео великолепного качества. Поэтому при покупке «плазмы» ищите телевизор именно с таким форматом.

Если вы хотите выбрать плазменный телевизор правильно, поинтересуйтесь его разрешением

Еще один ключевой параметр плазменного телевизора – величина его разрешения. От него зависит не только четкость «картинки», но и яркость цветов. В настоящее время практически идеальным считается HD-разрешение с показателем 1080i или 1080p.

Чтобы выбрать плазменный телевизор правильно, обращайте внимание и на количество портов-входов на его корпусе. Современная «плазма» должна иметь как минимум один HDMI-порт с поддержкой HDCP-протокола. Желательно, чтобы телевизор предусматривал возможность подключения к компьютеру – для этого потребуется VGA или DVI-входы. Само собой разумеется, что любой плазменный телевизор должен иметь порты и для простого DVD-плеера.

Плазменные телевизоры за годы своего развития заслужили большую популярность у пользователей. Именно качество изображения дало возможность плазменным аппаратам занимать лидирующие позиции на рынке телевизионных экранов вплоть до введения сверхвысокого разрешения Ultra HD в 2014 году. Эта статья написана в 2014 году и информация актуальна на то время. В 2015 году в продаже уже не было плазменных телевизоров мировых брендов. Та же ситуация и в 2016 году, плазма ушла с рынка экранов для телевизоров.

Как работает плазменный экран

Современные плоскопанельные дисплеи состоят из отдельных точек. Если разрешение телевизора измеряется в пикселях, то каждый пиксел состоит из трех отдельных точек (субпикселов). Каждая точка окрашена в свой цвет: красный, зеленый, синий. В цветном телевидении именно из этих трех основных цветов получаются все остальные, путем смешивания. В плазменных экранах разрешение может быть Full HD (1920x1080 пикселов) или HD Ready (1366x768 пикселов), а точек в каждом случае в три раза больше.

Телевизионные экраны плоскопанельных телевизоров разделяются на два типа: те, у которых каждая точка сама испускает свет и те, у которых элементы экрана пропускают нужное количество света от источника света. Экраны с элементами, которые пропускают свет, называются жидкокристаллические. Именно ячейки с жидкими кристаллами через себя и пропускают количество света, зависящее от положения кристалла в ячейке. При этом источниками света может быть или лампа, тогда телевизор называется LCD, или светодиоды, тогда телевизор называется LED. На сегодня лампы для подсветки уже не используются, остались только светодиоды, поэтому и "LCD" и "LED" обозначают один тип телевизоров: на жидкокристаллической матрице с подсветкой от светодиодов.

Экраны, у которых каждая точка сама является источником света, имеют совсем другую технологию изготовления и другой принцип формирования изображения. К таким экранам относят плазму и OLED.

На сегодня OLED экраны построены на светоизлучающих диодах и очень немного моделей телевизоров OLED имеется в продаже. Это флагманские модели каждого производителя и стоят они дорого.

Плазменные панели состоят из ячеек, у которых внутри находится газ и при подаче напряжения создается разряд в газе (плазма). И именно от него исходит ультрафиолетовое излучение, которое затем воздействует на люминофор, свечение которого мы и видим.

Принцип работы ячейки дисплея

Процессор выбирает нужный пиксель и подает на ячейки напряжение, которое зависит от передаваемого изображения в этой точке. И так по очереди обновляются все пиксели. В современных плазменных телевизорах за одну секунду весь экран может обновиться 400-600 раз, в характеристиках это указано как кадровая частота 400 Гц или 600 Гц. При такой частоте человек не сможет увидеть мерцания на экране, а так же улучшается отображение видео на динамических сценах. И по сравнению с ЖК (LCD) телевизорами время реакции ячейки на управляющий сигнал лучше у плазмы, что дает преимущество по такому параметру как время отклика.

Дополнительные функции телевизоров, такие как 3D, Smart TV, возможность подключить другие устройства и др. не зависят от технологии экрана и на плазменных телевизорах они так же присутствуют, как и на других. Только нужно смотреть характеристики каждой модели, что бы в наборе было то, что вам нужно.

Преимущества плазменных экранов

За годы существования плазменных и жидкокристаллических дисплеев проведено много сравнений этих двух технологий. Все эти сравнения говорят только о преимуществе плазменных панелей в качестве изображения над LCD.

УРОВЕНЬ ЧЕРНОГО И КОНТРАСТНОСТЬ

Одним из главных показателей качества экрана является уровень черного на изображении, который может обеспечить экран. И в этом показателе всегда выигрывают экраны с технологией, по которой ячейка сама испускает свет. А сюда относятся и плазма и OLED и уже ушедшие с рынка кинескопы.

У жидкокристаллических матриц ячейка с кристаллом не может полностью перекрыть свет от светодиодов и поэтому черные участки изображения имеют оттенок серого. Для исправления этой проблемы светодиоды в подсветке группами изменяют свою яркость, и так повышают уровень черного на участках экранах, где в данный момент отображается темная сцена на изображении. Это называется динамическая контрастность, потому что она меняется от яркости подсветки. Но статическая контрастность матрицы остается неизменной и она у жк хуже. А вот у плазмы таких проблем нет, и для отображения черного просто не подают напряжение к ячейкам и они не светятся. Так получается естественный черный. А значит, и контрастность у плазмы будет выше. Контрастность – это отношение яркости самого светлого участка на изображении к яркости самого темного участка.

ЦВЕТОПЕРЕДАЧА

За счет хорошей контрастности и цветопередача лучше и цветовой охват больше чем у жк экранов.

Что касается OLED дисплеев, то их параметры изображения лучше, чем и у плазмы и у LCD, так что сравнение с ними проигрывают обе старые технологии.


Плазменный телевизор SAMSUNG PS51F8500

Недостатки

Годы развития плазменных экранов позволили преодолеть недостатки присущие этой технологии в начале развития.

Да, яркость плазмы меньше чем у LCD телевизоров, особенно со светодиодной подсветкой и в ярко освещенной комнате это может стать проблемой. Но при домашнем просмотре плазменные телевизоры показывают достаточную яркость экрана.

СРОК СЛУЖБЫ

Недолговечность так же ушла на второй план. Современные плазменные телевизоры имеют время наработки несколько десятков тысяч часов, и может это и меньше чем у других технологий, но для многолетней службы вам этого вполне достаточно.

ВЫГОРАНИЕ ЭКРАНА

Эта проблема была присуща первым моделям плазменных экранов, особенно она проявлялась, когда на экране долго была неподвижная картинка. Это мог быть логотип канала, если вы его постоянно смотрели. Современные модели плазменных телевизоров успешно преодолели этот недостаток.

Развитие плазменных телевизоров на 2014 год

Можно сказать, что пик популярности плазменных телевизоров уже прошел. Уже давно (с 2010 года) прекратила производство своих плазменных телевизоров фирма Pioneer, особенно были знамениты ее модели семейства Kuro. Никто не мог конкурировать с этими телевизорами в то время.

После ухода Pioneer лидерство в производстве плазменных телевизоров перехватила компания Panasonic. В 2013 году была выпущена одна из лучших моделей плазменного телевизора за все время под названием Panasonic TX-P60ZT60 , серия ZT60 считается лучшей среди плазменных телевизоров, да и серия VT60 так же признается одной из лучших. А в марте 2014 года Panasonic прекратил выпуск плазменных телевизоров.


Плазменный телевизор Panasonic TX-P60ZT60

После ухода фирмы Panasonic с рынка плазменных телевизоров из крупных производителей выпуском плазменных панелей занимались еще Samsung и LG. Но уже в модельном ряду 2014 года моделей с плазменными экранами было очень мало, и они находились больше в бюджетном сегменте. Флагманские модели изготовляются с LED и OLED экранами.

И вот осенью 2014 года прекратили выпуск плазменных телевизоров и фирмы LG и Samsung . На сегодня выпуском моделей плазменных телеприемников еще занимаются малоизвестные компании. Но эти аппараты не занимают лидирующего положения на рынке телеприемников.

Основное внимание сегодня всеми производителями телетехники уделяется развитию сверхвысокого разрешения 4K Ultra HD и экранов OLED. Именно не возможность поддержать сверхвысокое разрешение, которое в 4 раза больше Full HD и не позволило дальше развиваться плазменной технологии изготовления экранов. А основную группу моделей для разного ценового диапазона занимают представители LED телевизоров.

Плазменные телевизоры Samsung на 2014 год : PE H4500, PE H4000. Есть разные диагонали, а так же в модельный ряд вошли и представители 2013 года. Специалисты отмечают модель 2013 года PS F8500.

Плазменные телевизоры LG на 2014 год : РВ6600, РВ5600.

На лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение , которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
  • Красный: Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
  • Синий: BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21" был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42" с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50" и 61". Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61" появился размер 65", а также рекордный 103". Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150"! Но это, как и модели 103" (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана - это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей - красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью - по всему экрану - расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка - красная, зеленая или голубая - называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов - ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность - сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота - порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма - это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

Большой размер экрана + компактность + отсутствие элемента мерцания; - Высокая четкость изображение; - Плоский экран, не имеющий геометрических искажений; - Угол обзора 160 градусов по всем направлениям; - Механизм не подверженный влиянию магнитных полей; - Высокие разрешение и яркость изображения; - Наличие компьютерных входов; - Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.