МЕТОД ЭКВИВАЛЕНТНЫХ ПРЕОБРАЗОВАНИЙ

Во многих случаях анализа сложных ЭЦ возникает необходимость преобразование цепи с целью ее упрощения, т.е. уменьшения количества элементов цепи. Преобразование считается эквивалентным, если оно не изменяет токи и напряжения в непреобразованной части цепи. При этом изменение топологии ЭЦ не меняет её свойств. Отметим, что не только виды элементов, но и топология их сочетания определяют свойства ЭЦ.

3.1. Любой источник тока (рис. 1.2 б) может быть заменен эквивалентным источником напряжения (рис. 1.2а) и наоборот. При этом источник тока, эквивалентный источнику напряжения, должен генерировать ток, равный току короткого замыкания источника напряжения, и иметь параллельное внутреннее сопротивление, равное последовательному внутреннему сопротивлению источника напряжения, т.е. схемы эквивалентны, если

или .

Например, после замены источника тока источником напряжения (рис. 1.3) в обобщенной ветви последняя будет выглядеть так:

= Рис.3.1 Рис.3.2

где . Обратите внимание, направление эквивалентного источника ЭДС совпадает с напряжением источника тока . Ниже будет показано, что данный участок цепи можно упростить, как показано на рис. (3.2), где .

3.2. Последовательное соединение резисторов при эквивалентной замене суммируется:

где – число последовательно соединенных резисторов. При данном соединении всегда больше большего из сопротивлений. В частном случае, если каждое из сопротивлений равно , то .

Пример. Определить эквивалентное сопротивление цепи на зажимах .

= Рис 3.4 Рис 3.5 . Рис 3.6

Здесь , т.к. разрыв цепи между точками и имеет бесконечно большое сопротивление.

3.3. При параллельном соединении резистора суммируется их проводимость , где - число параллельно соединенных резисторов, и . При параллельном соединении всегда меньше меньшего из сопротивлений. В частном случае, если каждое из сопротивлений равно , то . В случае двух параллельно соединенных сопротивлений и :

= Рис 3.7 Рис 3.8 , или .

Пример. Определить на зажимах .

= Рис 3.9 Рис 3.10 а) . Рис 3.10

Здесь , т.к. сопротивление закоротки равно нулю.

РАСЧЕТНЫЕ ФОРМУЛЫ

Тип элемента Последовательное соединение m-элементов Параллельное соединение m-элементов Резисторы Конденсаторы Катушки индуктивности

3.4. При смешанном соединении резисторов эквивалентное сопротивление цепи определяет последовательным упрощением схемы и «сворачиванием» ее к одному сопротивлению, равному . При расчете токов в отдельных ветвях ЭЦ «разворачивают» в обратной последовательности.

Пример. Определить относительно зажимов .

= = Рис 3.11 Рис 3.12 Рис 3.12 а) . = = Рис 3.13 Рис 3.14 Рис 3.15 б) , . = Рис 3.16 Рис 3.17 = Рис 3.18 Рис 3.19 в) , где .

В последнем примере сопротивление закорочено, а сопротивления , , имеют только одну общую точку со схемой и поэтому они не учитываются. Сопротивления и включены последовательно и эквивалентное им сопротивление , а и включены параллельно, поэтому:

3.5. Преобразование пассивного треугольника сопротивлений в эквивалентную трехлучевую звезду. Схемы будут эквивалентны, если сопротивления между узлами и , и , и в обеих схемах «звезды» и «треугольника» будут одинаковыми:

= Рис. 3.20 Рис. 3.21

Решая совместно эти уравнения, получим:

Обратное преобразование трехлучевой звезды в треугольник:

Пример . Определить эквивалентное сопротивление ЭЦ относительно зажимов .

= Рис 3.22 Рис 3.23 = Рис 3.24 Рис 3.25

Сначала преобразуем треугольник сопротивлений , , в эквивалентную трехлучевую звезду , , ; затем преобразуем последовательно соединенные резисторы , и , , эквивалентные сопротивления которых соединены между собой параллельно и могут быть заменены одним :

Резистор включен параллельно резисторам и , соединенным между собой последовательно. Поэтому эквивалентное сопротивление всей ЭЦ относительно зажимов :

3.6. Преобразование ветвей, содержащих последовательные и параллельные соединения источников ЭДС и тока.

= Рис 3.26 Рис 3.27 = Рис 3.28 Рис 3.29 = или Рис 3.30 Рис 3.31 Рис 3.32 а) г) Если . Два источника тока могут быть соединены последовательно, если они равны и одинаково направлены в противном случае не будет выполняться ЗТК в месте соединения двух источников. . Два источника ЭДС могут быть включены параллельно, если они равны и имеют одинаково включенную полярность. Если эти условия не выполняются, то ЗНК будет нарушен в контуре, содержащем эти источники. д) 3.7. Часть схемы, состоящей из параллельных ветвей ЭДС и проводимостями , эквивалентно либо одной ветви с проводимостью и ЭДС :

либо двум параллельным ветвям с той же проводимостью и источником тока :

ПРАВИЛО ЗНАКОВ. Слагаемые , берутся с плюсом при совпадении направления ЭДС и , при несовпадении – с минусом.

Пример. Преобразовать схему с параллельными ветвями, содержащими источники ЭДС, в эквивалентную.

= = Рис 3.33 Рис 3.34 Рис 3.35

Где):

Посредством найдем токи на резисторах и ( и ):

Остальные токи можно найти посредством ЗТК для изначальной схемы.

Довольно часто при анализе линейных резистивных цепей приходится применять метод упрощения. Этот метод состоит в том, что участки электрической цепи заменяются более простыми по структуре, при этом токи и напряжения в не преобразованной части цепи не должны изменяться. При этом необходимо уметь преобразовывать последовательно и параллельно соединенные резистивные элементы, а также соединения треугольником и звездой.

2.1 Последовательное соединение резистивных элементов .

Ток во всех последовательно соединенных элементах один и тот же. Для схемы на рис. 2.1 можно записать

U = (R1 + R2 +...+ RN)I = R Э I, (2.1)

где R Э – эквивалентное сопротивление. .

Как видно из формулы, оно определяется как сумма всех последовательно включенных сопротивлений.

R Э = R1+R2+…+RN. (2.2)

2.2 Параллельное соединение резистивных элементов.

В схеме (рис. 2.2) ко всем элементам приложено одно и то же напряжение U, а ток разветвляется (I = I 1 + I 2 +...+ I n), поэтому можно записать:

(2.3)

Вводя понятие проводимости G=1/R, получим:

I = U(G 1 + G 2 +...+ G n) = UG э. (2.4)

Таким образом, эквивалентная проводимость G э параллельно включенных резистивных элементов равна сумме их проводимостей. В частном случае, если параллельно соединены два резистора, их эквивалентное сопротивление

2.3. Соединения треугольником и звездой

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рис.2.3) и эквивалентной звездой (рис.2.4).

Рис. 2.3 Рис. 2.4

Сопротивления лучей эквивалентной звезды определяют по формулам:

(2.8)

(2.9)

(2.10)

где R 1 , R 2 , R 3 – сопротивления лучей эквивалентной звезды сопротивлений, а R 12 , R 23 , R 31 – сопротивления сторон эквивалентного треугольника сопротивлений.

При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления сторон треугольника рассчитывают по следующим формулам:

(2.11)

(2.12)

(2.13)

2.4 Примеры решения задач

2.1. Для электрической цепи постоянного тока с параллельным соединением резисторов R 1 , R 2 , R 3 (рис.2.5)определить ток I в неразветвленной её части и токи в отдельных ветвях: I 1 , I 2 , I 3 . Сопротивления резисторов: R 1 =5Ом, R 2 =10Ом, R 3 =15Ом, напряжение питающей сети U =110В.

Рис. 2.5

Решение. Эквивалентную проводимость всей цепи определим следующим образом:

Ток в неразветвленной части электрической цепи:

Токи в ветвях схемы:

2.2. Для условий задачи 2.1 ток в неразветвленной части цепи I =22A. Определить токи I 1 , I 2 , I 3 в ветвях резисторов R 1 , R 2 , R 3 .



Решение. Проводимости отдельных участков электрической цепи:

.

Эквивалентная проводимость цепи:

Напряжение между узловыми точками:

Токи в ветвях резисторов:

2.3. Для цепи постоянного тока, приведенной на рис.2.6, определить общий ток I и токи I 1 , I 2 , I 3 , I 4 в ветвях резисторов R 1 R 4 . к цепи подведено напряжение U =240В, сопротивления резисторов R 1 =20Ом, R 2 =15Ом, R 3 =10Ом, R 4 =5Ом.

Решение. Эквивалентное сопротивление участка электрической цепи с резисторами R 1 и R 2 :

Эквивалентное сопротивление участка цепи с резисторами R 3 и R 4 :

Общее сопротивление цепи:

Общий ток в цепи:

Рис.2.6

Падение напряжения на параллельных участках цепи:

,

Токи в ветвях соответствующих резисторов:

2.4. Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R 12 , R 13 , R 24 , R 34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12 Рис. 1.13

В мостовой схеме сопротивления R 13 , R 12 , R 23 и R 24 , R 34 , R 23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R 24 R 34 R 23 звездой R 2 R 3 R 4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.


2.5. Задачи для самостоятельного решения

2.4. Для электрической цепи постоянного тока (рис.2.7) определить токи I 1 , I 2 , I 3 при напряжении U =240В и сопротивление резистора R 1 . Сопротивление резисторов: R 2 =10Ом, R 3 =15Ом. Мощность потребляемая цепью, измеряемая ваттметром W , равна 7,2кВт.

Рис.2.7

2.5. Для разветвленной электрической цепи постоянного тока, представляемой на рис.2.7, определить токи I 1 , I 2 , I 3 при напряжении питающей сети U =80В. Сопротивление резисторов: R 1 =10Ом, R 2 =15Ом, R 3 =10Ом.

2.6. Контрольное задание

Определить эквивалентное сопротивление R экв электрической цепи постоянного тока (рис.2.8) и распределение токов в ветвях. Положение выключателя S 1 , величины сопротивлений резисторов R 1 R 12 и питающего напряжения U для каждого из вариантов задания приведены в таблице 2.1.

Рис. 2.8

Таблица 2.1

Величина Вариант задания
R 1 , Ом
R 2 , Ом
R 3 , Ом
R 4 , Ом
R 5 , Ом
R 6 , Ом
R 7 , Ом
R 8 , Ом
R 9 , Ом
R 10 , Ом
R 11 , Ом
R 12 , Ом
U , В
S 1

Продолжение таблицы 2.1

Величина Вариант задания
R 1 , Ом
R 2 , Ом
R 3 , Ом
R 4 , Ом
R 5 , Ом
R 6 , Ом
R 7 , Ом
R 8 , Ом
R 9 , Ом
R 10 , Ом
R 11 , Ом
R 12 , Ом
U , В
S 1

2.2. Параллельное соединение элементов
электрических цепей

На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.

Рис. 2.2

Токи в параллельных ветвях определяются по формулам:

где - проводимости 1-й, 2-й и n-й ветвей.

В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

Пусть электрическая схема содержит три параллельно включенных сопротивления.
Эквивалентная проводимость

Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R одного элемента

Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.


Рис. 2.3 Эквивалентная проводимость схемы

,

а эквивалентное сопротивление

Напряжение на входе схемы

Токи в параллельных ветвях

Аналогично

Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

2.3.Преобразование треугольника сопротивлений
в эквивалентную звезду

Встречаются схемы, в которых отсутствуют сопротивления, включенные последовательно или параллельно, например, мостовая схема, изображенная на рис. 2.4. Определить эквивалентное сопротивление этой схемы относительно ветви с источником ЭДС описанными выше методами нельзя. Если треугольник сопротивлений R1-R2-R3, включенных между узлами 1-2-3 заменить трехлучевой звездой сопротивлений, лучи которой расходятся из точки 0 в те же узлы 1-2-3, эквивалентное сопротивление полученной схемы легко определяется.


Рис. 2.4 Сопротивление луча эквивалентной звезды сопротивлений равно произведению сопротивлений прилегающих сторон треугольника, деленному на сумму сопротивлений всех сторон треугольника.
В соответствии с указанным правилом, сопротивления лучей звезды определяются по формулам:

Эквивалентное соединение полученной схемы определяется по формуле

Сопротивления R0 и Rλ1 включены последовательно, а ветви с сопротивлениями Rλ1 + R4 и Rλ3 + R5 соединены параллельно.

2.4.Преобразование звезды сопротивлений
в эквивалентный треугольник

Иногда для упрощения схемы полезно преобразовать звезду сопротивлений в эквивалентный треугольник.
Рассмотрим схему на рис. 2.5. Заменим звезду сопротивлений R1-R2-R3 эквивалентным треугольником сопротивлений RΔ1-RΔ2-RΔ3, включенных между узлами 1-2-3.


2.5. Преобразование звезды сопротивлений
в эквивалентный треугольник

Сопротивление стороны эквивалентного треугольника сопротивлений равно сумме сопротивлений двух прилегающих лучей звезды плюс произведение этих же сопротивлений, деленное на сопротивление оставшегося (противолежащего) луча. Сопротивления сторон треугольника определяются по формулам:

Эквивалентное сопротивление преобразованной схемы равно

НОВОСТИ ФОРУМА
Рыцари теории эфира
30.12.2019 - 19:19: -> - Карим_Хайдаров.
30.12.2019 - 19:18: -> - Карим_Хайдаров.
30.12.2019 - 16:46: -> - Карим_Хайдаров.
30.12.2019 - 14:54: -> - Карим_Хайдаров.
29.12.2019 - 16:19: -> - Карим_Хайдаров.
26.12.2019 - 07:09: -> - Карим_Хайдаров.
23.12.2019 - 07:44: -> - Карим_Хайдаров.
23.12.2019 - 07:39:

Неразветвлённая электрическая цепь характеризуется тем, что на всех её участках протекает один и тот же ток, а разветвлённая содержит одну или несколько узловых точек, при этом на участках цепи протекают разные токи.

При расчётах неразветвлённых и разветвлённых линейных электрических цепей постоянного тока могут быть использованы различные методы, выбор которых зависит от вида электрической цепи.

При расчётах сложных электрических цепей во многих случаях целесообразно производить их упрощение путём свертывания, заменяя отдельные участки цепи с последовательным, параллельным и смешанным соединениями сопротивлений одним эквивалентным сопротивлением с помощью метода эквивалентных преобразований электрических цепей.

Рис. 1.1 Рис.1.2

Электрическая цепь с последовательным соединением сопротивлений

(рис. 1.1) заменяется при этом цепью с одним эквивалентным сопротивлением R эк (рис. 1.2), равным сумме всех сопротивлений цепи:

где R 1 , R 2 , R 3 ,…, R n - сопротивления отдельных участков цепи. При этом ток I электрической цепи сохраняет неизменным своё значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков:

Рис. 1.3 Рис. 1.4

При параллельном соединении сопротивлений все сопротивления находятся под одним и тем же напряжением U (рис. 1.3). Электрическую цепь, состоящую из параллельно соединённых сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением R эк (рис. 1.2), которое определяется из выражения:

обратных сопротивлениям участков параллельных ветвей электрической цепи (сумма проводимостей ветвей цепи); R к − сопротивление параллельного участка цепи; q эк эквивалентная проводимость параллельного участка цепи,

n – число параллельных ветвей цепи. Эквивалентное сопротивление участка цепи, состоящего из одинаковых параллельно соединённых сопротивлений, При параллельном соединении двух сопротивлений R 1 иR 2 эквивалентное coпротивление

а токи распределяются обратно пропорционально их сопротивлениям, при этом U = R 1 I 1 = R 2 I 2 = R 3 I 3 =…= R n I n .

При смешанном соединении сопротивлений (рис. 1.4), т. е. при наличии участков электрической цепи с последовательным и параллельным

соединением сопротивлений, эквивалентное сопротивление (рис. 1.2) цепи

определяется в соответствии с выражением:

Литература. ГОСТ Р 52002 – 2003; с. 15 – 18, 22 − 26;

с. 14 – 17; с. 18 – 23, 25 – 29.

Пример решения

Определитьобщее эквивалентное сопротивление R эк и распределение токов в электрической цепи постоянного тока (рис. 1.5). Сопротивления резисторов R 1 =R 2 =1 Oм ; R 3 =6 Oм ; R 5 =R 6 =1 Oм ; R 4 =R 7 =6 Oм ; R 8 =10 Oм ; R 9 =5 Oм ; R 10 =10 Oм . Напряжение питающей сети U=120 В .

Решение . Сопротивление участка цепи между узлами 1 и 4 :

1" и 3 цепи:

Сопротивление участка между узлами 1"" и 2 цепи:

Эквивалентное сопротивление всей электрической цепи:

Ток в неразветвлённой электрической части цепи:

Напряжение между узлами 1 и 2 цепи в соответствии со II законом Кирхгофа .

2. Метод преобразования (свертки) схемы

Если схема электрической цепи содержит только один источник энергии (E или J ), то пассивная часть схемы может быть преобразована (свернута) к одному эквивалентному эле-менту R Э (рис. 7).

Свертка схемы начинается с самых удаленных от источника ветвей, про-водится в не-сколько этапов до достижения полной свертки. После полной свертки схемы определяется ток источника по закону Ома: . Токи в ос-тальных элементах исходной схемы находятся в процессе об-ратной развертки схемы. Такой метод расчета токов получил название метода последова-тельного преобразования (свертки) схемы.
При применении данного метода возможны следующие виды преобразо-ваний.
1) Последовательное преобразование заключается в замене нескольких элементов, включенных последовательно, одним эквивалентным (рис. 8). Несложно доказать, что при этом справедливы следующие соотношения:
и


2) Параллельное преобразование состоит в замене нескольких элемен-тов, вклю-чен-ных параллельно, одним эквивалентным (рис. 9). Несложно доказать, что при этом справедливы следующие соотношения:
и
Для двух элементов: и


3) Взаимное преобразование схем звезда -треугольник (рис. 10) возни-кает при свертке сложных схем.
Условием эквивалентности двух схем являются равенства для них токов (I 1, I 2, I 3), на-пряжений (U 12, U 23, U 31) и входных сопротивлений (R 12, R 23, R 31) и соответственно входных проводимостей (G 12, G 23, G 31).
Приравняем входные сопротивления для обеих схем со стороны двух произвольных ветвей при отключенной третей (рис. 10):

(1)
(2)
(3)

Сложим почленно уравнения (1) и (3) и вычтем из суммы уравнение (2), получим:
, по аналогии: , .
Приравняем входные проводимости для обеих схем со стороны произ-вольной вер-шины и двух других вершин, замкнутых накоротко (рис. 11):
(4)
(5)
(6)
Сложим почленно уравнения (4) и (5) и вычтем уравнение (6), получим:
, по аналогии: , .
В последних уравнениях заменим проводимости на соответствующие им сопротивле-ния , получим:
; ; .


При наличии полной симметрии соотношение между параметрами экви-валентных схем составляет:.
4) Замена параллельных ветвей эквивалентной ветвью (рис. 12) осу-ществляется со-гласно теореме об эквивалентном генераторе.