Пусть распределение тока вдоль длины антенны является постоянным:

Реальные антенны, (например, волноводно-щелевые) или печатные антенные решетки часто имеют именно такое токовое распределение. Вычислим диаграмму направленности такой антенны:

Теперь построим нормированную ДН:

(4.1.)

Рис. 4.3 Диаграмма направленности линейной антенны с равномерным токовым распределением

В этой диаграмме направленности можно выделить следующие участки:

1) Главный лепесток – участок диаграммы направленности, где поле максимально.

2) Боковые лепестки.

На следующем рисунке представлена диаграмма направленности в полярной системе координат, в которой
имеет более наглядный вид (рис.4.4).

Рис. 4.4 Диаграмма направленности линейной антенны с равномерным токовым распределением в полярной системе координат

Количественной оценкой направленности антенны принято считать ширину главного лепестка антенны, которая определяется либо по уровню -3 дБ от максимума либо по нулевым точкам. Определим ширину главного лепестка по уровню нулей. Здесь приближенно можно считать, что для остронаправленных антенн:
. Условие равенства нулю множителя системы можно приближенно записать таким образом:

Учитывая, что
, последнее условие можно переписать таким образом:

Для больших значений электрической длины антенны (для малых значений полуширины главного лепестка антенны), с учетом того, что синус малого аргумента приближенно равен значению аргумента, последнее соотношение можно переписать в виде:

Откуда окончательно получим соотношение, связывающее ширину главного лепестка и размер антенны в долях длины волны:

Из последнего соотношения следует важный вывод: для синфазной линейной антенны при фиксированной длине волны увеличение длины антенны приводит к сужению диаграммы направленности.

Оценим уровень боковых лепестков в данной антенне. Из соотношения (4.1) можно получить условие углового положения первого (максимального) бокового лепестка:

(-13 дБ)

Оказывается, что в этом случае уровень боковых лепестков не зависит от длины антенны и частоты, а определяется только видом амплитудного распределения тока. Для уменьшения УБЛ следует отказаться от принятого вида амплитудного распределения (от равномерного распределения), а перейти к распределению, спадающему к краям антенны.

5. Линейная антенная решетка

5.1. Вывод выражения для дн лар

Выражение 4.2. позволяет легко перейти от поля линейной непрерывной антенной системы к полю дискретной антенной решетки. Для этого достаточно задать распределение тока под знаком интеграла в виде решетчатой функции (совокупности дельта-функций) с весами, соответствующими амплитудам возбуждения элементов и соответствующими координатами. В этом случае результатом является диаграмма направленности антенной решетки как дискретное преобразование Фурье. Магистрантам предоставлется реализовать этот подход самостоятельно в качестве упражнения.

6. Синтез афр по заданной дн.

6.1. Исторический обзор, особенности задач синтеза антенн.

Часто, для обеспечения правильной работы радиотехнических систем, к антенным устройствам, которые являются их составной частью, предъявляются особые требования. Поэтому проектирование антенн, обладающих заданными характеристиками, является одной из важнейших задач.

В основном требования предъявляются к диаграмме направленности (ДН) антенного устройства и носят весьма разнообразный характер: может требоваться конкретная форма главного лепестка ДН (например, виде сектора и косеканса), определенный уровень боковых лепестков, провал в заданном направлении или в заданном интервале углов. Раздел теории антенн, посвященный решению данных задач, получил название теории синтеза антенн.

В большинстве случаев точное решение задачи синтеза не найдено и речь может идти о приближенных методах. Подобные задачи исследуются достаточно давно и найдено немало методов и приемов. К методам решения задач синтеза антенн также предъявляются определенные требования: к быстродействию; устойчивости, т.е. малой чувствительности к незначительным изменениям параметров (частоты, размеров антенн и т.п.); практической реализуемости. В рассмотрены наиболее простые методы: парциальных диаграмм и интеграла Фурье. Первый метод основан на аналогии преобразования Фурье и связи амплитудно-фазового распределения с ДН, в основе второго лежит разложение ДН ряд по базисным функциям (парциальным ДН). Зачастую, решения, полученные этими методами, трудно применить на практике (антенны обладают плохим КИП, труднореализуемое амплитудно-фазовое распределение (АФР), решение является неустойчивым). В и рассмотрены методы, позволяющие учитывать ограничения на АФР и избегать т.н. «эффекта сверхнаправленности» .

Отдельно стоит выделить задачи смешанного синтеза , важнейшей из которых является задача фазового синтеза , т.е нахождение фазового распределения при заданном амплитудном, приводящего к требуемой ДН. Актуальность задач фазового синтеза объяснятся большим применением фазированных антенных решеток (ФАР). Методы, позволяющие решить такие задачи, описаны в , и .

В идеале луч, направляемый антенной на спутник, должен иметь форму острого карандаша. К сожалению, поскольку длина волн в данном случае мала по сравнению с апертурой (диаметром) антенны, фиксированная фокальная точка в действительности не является точной. Это вызывает небольшое расхождение главного луча и некоторое нежелательное улавливание внеосевых сигналов. Результирующая полярная диаграмма состоит из узкого луча, называемого главным лепестком и серии боковых лепестков меньшей амплитуды.


Типовая диаграмма направленности параболического
рефлектора в полярной системе координат

Поскольку полярную диаграмму часто трудно интерпретировать, предпочтение отдается форме представления в прямоугольной системе координат. Нормированная теоретическая характеристика сигнала для равномерно облучаемой антенны диаметром 65 см на частоте 11 ГГц представлена на рисунке:

На самом деле факторы, перечисленные выше, будут способствовать внесению неровностей в данную характеристику, но общая картина показанной зависимости останется неизменной.

Фоновый шум поступает на антенную систему в основном через боковые лепестки, поэтому необходимо, чтобы они были как можно меньше по отношению к амплитуде главного лепестка. Равномерно облучаемая антенна теоретически создает первый и самый большой из этих боковых лепестков на уровне около -17,6 дБ ниже максимального значения главного лепестка.

На практике облучение редко бывает равномерным. Точность распределения облучения зависит от типа установленного облучателя. Это приводит нас к понятию эффективной площади или эффективности антенной системы. Другими словами, наибольшая часть мощности сигнала собирается с центральной части зеркала и уменьшается по направлению к внешним краям антенны. Поэтому слабый раскрыв рефлектора антенны может служить защитой от фонового шума.

Неполное (недостаточное) облучение зеркала уменьшает уровень первого бокового лепестка до значения менее -20 дБ, снижая таким образом воздействие фонового шума. На первый взгляд, это решение кажется идеальным, но оно приводит к некоторым нежелательным последствиям - уменьшению коэффициента усиления антенны и соответствующему увеличению ширины луча (главного лепестка). Основной характеристикой диаграммы направленности антенны является ее ширина по уровню половинной мощности, которая рассчитывается как,ширина главного лепестка диаграммы на уровне -3 дБ. Уравнения, которые применяются для вычисления ширины диаграммы направленности на любом заданном уровне главного лепестка, достаточно сложны и трудоемки для выполнения. Однако такие параметры, как ширина главного лепестка на уровне -3 дБ, амплитуда первого бокового лепестка и расположение первого нуля (провала в диаграмме направленности), зависящего от установленного способа облучения, могут быть легко рассчитаны при помощи выражений, приведенных ниже в таблице. Косинусное распределение близко к среднему, и если способ принятого облучения неизвестен, то оно может быть использовано в качестве первого приближения при расчете ширины диаграммы направленности на уровне -3 дБ.

Антенна, вне зависимости от конструкции, обладает свойством обратимости (может работать как на прием, так и на излучение). Часто в радиорелейных трактах одна и та же антенна может быть подключена одновременно к приемнику и передатчику. Это позволяет излучать и принимать сигнал в одном направлении на разных частотах.

Почти все параметры приемной антенны соответствуют параметрам передающей антенны, но иногда имеют несколько другой физический смысл.

Несмотря на то, что приемная и передающая антенны обладают принципом двойственности, в конструктивном отношении они могут существенно отличаться. Связано это с тем, что передающая антенна должна пропускать через себя значительные мощности для передачи электромагнитного сигнала на большие (максимально возможные) расстояния. Если же антенна работает на прием, то она взаимодействует с полями очень малой напряженности. Вид токопередающей конструкции антенны часто определяет ее конечные габариты.

Пожалуй, основная характеристика любой антенны это диаграмма направленности. Из нее вытекает множество вспомогательных параметров и такие важные энергетические характеристики как коэффициент усиления и коэффициент направленного действия.

Диаграмма направленности

Диаграмма направленности (ДН) - это зависимость напряженности поля, создаваемого антенной на достаточно большом расстоянии, от углов наблюдения в пространстве. В объеме диаграмма направленной антенны может выглядеть так, как показано на рисунке 1.

Рисунок 1

То, что изображено на рисунке выше также еще называют пространственной диаграммной направленностью, которая является поверхностью объема и может иметь несколько максимумов. Главный максимум, выделенный на рисунке красным цветом, называется главным лепестком диаграммы и соответствует направлению главного излучения (или приема). Соответственно первые минимальные или (реже) нулевые значения напряженности поля вокруг главного лепестка определяют его границу. Все остальные максимальные значения поля называются боковыми лепестками.

На практике встречаются различные антенны, которые могут иметь несколько направлений максимального излучения, или не иметь боковых лепестков вовсе.

Для удобства изображения (и технического применения) ДН их принято рассматривать в двух перпендикулярных плоскостях. Как правило, это плоскости электрического вектора E и магнитного вектора H (которые друг другу в большинстве сред перпендикулярны), рисунок 2.


Рисунок 2

В некоторых случаях ДН рассматривают в вертикальной и горизонтальной плоскостях по отношению к плоскости Земли. Плоские диаграммы изображают полярной или декартовой (прямоугольной) системами координат. В полярных координатах диаграмма более наглядна, и при наложении ее на карту можно получить представление о зоне действия антенны радиостанции, рисунок 3.


Рисунок 3

Представление диаграммы направленности в прямоугольной системе координат более удобно для инженерных расчетов, такое построение чаще применяется для исследования самой структуры диаграммы. Для этого диаграммы строят нормированными, с главным максимумом, приведенным к единице. На рисунке ниже приводится типичная нормированная диаграмма направленности зеркальной антенны.


Рисунок 4

В том случае, когда интенсивность бокового излучения довольно небольшая и в линейном масштабе измерение бокового излучения затруднительно, применяют логарифмический масштаб. Как известно децибелы маленькие значения делают большими, а большие - маленькими, поэтому та же самая диаграмма в логарифмическом масштабе выглядит так, как показано ниже:


Рисунок 5

Из одной только диаграммы направленности можно вытащить довольно большое количество важных для практики характеристик. Исследуем подробнее диаграмму, изображенную выше.

Один из наиболее важных параметров - это ширина главного лепестка по нулевому излучению θ 0 и ширина главного лепестка по уровню половинной мощности θ 0,5 . Половина мощности соответствует уровню 3 дБ, или уровню 0,707 по напряженности поля.


Рисунок 6

Из рисунка 6 видно, что ширина главного лепестка по нулевому излучению составляет θ 0 = 5,18 град, а ширина по уровню половины мощности θ 0,5 = 2,15 град.

Также диаграммы оценивают по интенсивности бокового и обратного излучения (мощности боковых и задних лепестков), отсюда вытекает еще два важных параметры антенны - это коэффициент защитного действия, и уровень боковых лепестков.

Коэффициент защитного действия - это отношение напряженности поля, излученного антенной в главном направлении к напряженности поля, излученного в противоположном направлении. Если рассматривают ориентацию главного лепестка диаграммы в направлении на 180 градусов, то обратного - на 0 градусов. Возможны и любые другие направления излучения. Найдем коэффициент защитного действия рассматриваемой диаграммы. Для наглядности изобразим ее в полярной системе координат (рисунок 7):


Рисунок 7

На диаграмме маркерами m1,m2 изображены уровни излучения в обратном и прямом направлениях соответственно. Коэффициент защитного действия определяется как:

В относительных единицах. То же самое значение в дБ:

Уровень боковых лепестков (УБЛ) принято указывать в дБ, показывая тем самым, насколько уровень бокового излучения слаб по сравнению с уровнем главного лепестка, рисунок 8.


Рисунок 8

Это два немаловажных параметра любой антенной системы, которые напрямую вытекают из определения диаграммы направленности. КНД и КУ часто путают между собой. Перейдем к их рассмотрению.

Коэффициент направленного действия

Коэффициент направленного действия (КНД) - это отношение квадрата напряженности поля, созданного в главном направлении (Е 0 2), к среднему значению квадрата напряженности поля по всем направлениям (Е ср 2). Как понятно из определения, КНД характеризует направленные свойства антенны. КНД не учитывает потери, так как определяется по излучаемой мощности. Из сказанного выше можно указать формулу для расчета КНД:

D=E 0 2 /E ср 2

Если антенна работает на прием, то КНД показывает, во сколько раз улучшится отношение сигнал/шум по мощности, при замене направленной антенны ненаправленной, если помехи приходят равномерно со всех направлений.

Для передающей антенны КНД показывает, во сколько раз нужно уменьшить мощность излучения, если ненаправленную антенну заменить направленной, при сохранении одинаковых напряженностей поля в главном направлении.

КНД абсолютно ненаправленной антенны, очевидно, равно единице. Физически пространственная диаграмма направленности такой антенны выглядит в виде идеальной сферы:


Рисунок 9

Такая антенна одинаково хорошо излучает во всех направлениях, но на практике нереализуема. Поэтому это своего рода математическая абстракция.

Коэффициент усиления

Как уже было сказано выше, КНД не учитывает потери в антенне. Параметр, который характеризует направленные свойства антенны и учитывает потери в ней, называется коэффициентом усиления.

Коэффициент усиления (КУ) G - это отношение квадрата напряженности поля, созданного антенной в главном направлении (Е 0 2), к среднему значению квадрата напряженности поля (Е оэ 2), созданного эталонной антенной, при равенстве подводимых к антеннам мощностей. Также отметим, что при определении КУ учитываются КПД эталонной и измеряемой антенны.

Понятие эталонной антенны очень важно в понимании коэффициента усиления, и в разных частотных диапазонах используют разные типы эталонных антенн. В диапазоне длинных/средних волн за эталон принят вертикальный несимметричный вибратор длиной четверть волны (рисунок 10).


Рисунок 10

Для такого эталонного вибратора D э=3,28 , поэтому коэффициент усиления длинноволновой/средневолновой антенны определяется через КНД так: G=D* ŋ/3,28 , где ŋ - КПД антенны.

В диапазоне коротких волн в качестве эталонной антенны принимают симметричный полуволновый вибратор, для которого Dэ=1,64, тогда КУ:

G=D*ŋ/1,64

В диапазоне СВЧ (а это почти все современные Wi-Fi, LTE и др. антенны) за эталонный излучатель принят изотропный излучатель, дающий D э =1, и имеющий пространственную диаграмму, изображенную на рисунке 9.

Коэффициент усиления является определяющим параметром передающих антенн, так как показывает, во сколько раз необходимо уменьшить мощность, подводимую к направленной антенне, по сравнению с эталонной, чтобы напряженность поля в главном направлении осталась неизменной.

КНД и КУ в основном выражают в децибелах: 10lgD, 10lgG.

Заключение

Таким образом, мы рассмотрели некоторые полевые характеристики антенны, вытекающие из диаграммы направленности и энергетические характеристики (КНД и КУ). Коэффициент усиления антенны всегда меньше коэффициента направленного действия, так как КУ учитывает потери в антенне. Потери могут возникать из-за отражения мощности обратно в линию питания облучателя, затекания токов за стенки (например, рупора), затенение диаграммы конструктивными частями антенны и др. В реальных антенных системах разница между КНД и КУ может составлять 1.5-2 дБ.

Ширина главного лепестка и уровень боковых лепестков

Ширина ДН (главного лепестка) определяет степень концентрации излучаемой электромагнитной энергии. Ширина ДН - это угол между двумя направлениями в пределах главного лепестка, в которых амплитуда напряжённости электромагнитного поля составляет уровень 0,707 от максимального значения (или уровень 0,5 от максимального значения по плотности мощности). Ширина ДН обозначается так:

2и - это ширина ДН по мощности на уровне 0,5;

2и - ширина ДН по напряжённости на уровне 0,707.

Индексом Е или Н обозначают ширину ДН в соответствующей плоскости: 2и, 2и. Уровню 0,5 по мощности соответствует уровень 0,707 по напряжённости поля или уровень - 3 дБ в логарифмическом масштабе:

Экспериментально ширину ДН удобно определять по графику, например, как это показано на рисунке 11.

Рисунок 11

Уровень боковых лепестков ДН определяет степень побочного излучения антенной электромагнитного поля. Он влияет на качество электромагнитной совместимости с ближайшими радиоэлектронными системами.

Относительный уровень бокового лепестка - это отношение амплитуды напряжённости поля в направлении максимума первого бокового лепестка к амплитуде напряжённости поля в направлении максимума главного лепестка (рисунок 12):

Рисунок 12

Выражается этот уровень в абсолютных единицах, либо в децибелах:

Коэффициент направленного действия и коэффициент усиления передающей антенны

Коэффициент направленного действия (КНД) количественно характеризует направленные свойства реальной антенны по сравнению с эталонной ненаправленной (изотропной) с ДН в виде сферы:

КНД - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности П(и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности излучения антенн одинаковы:

С учётом (25) можно получить:

Коэффициент усиления (КУ) антенны - это параметр, который учитывает не только фокусирующие свойства антенны, но и её возможности по преобразованию одного вида энергии в другой.

КУ - это число, показывающее, во сколько раз плотность потока мощности П (и, ц) реальной (направленной) антенны больше плотности потока мощности ПЭ (и, ц) эталонной (ненаправленной) антенны для этого же направления и на том же удалении при условии, что мощности, подведённые к антеннам, одинаковы.

Коэффициент усиления можно выразить через КНД:

где - коэффициент полезного действия антенны. На практике используют - коэффициент усиления антенны в направлении максимального излучения.

Фазовая диаграмма направленности. Понятие о фазовом центре антенны

Фазовая диаграмма направленности - это зависимость фазы электромагнитного поля, излучаемого антенной, от угловых координат.

Так как в дальней зоне антенны векторы поля Е и Н синфазны, то и фазовая ДН в одинаковой степени относится к электрической и магнитной составляющей ЭМП, излучаемого антенной. Обозначается фазовая ДН следующим образом: Ш = Ш (и, ц) при r = const.

Если Ш (и, ц) = const при r = const, то это означает, что антенна формирует фазовый фронт волны в виде сферы. Центр этой сферы, в котором находится начало системы координат, называют фазовым центром антенны (ФЦА). Следует отметить, что фазовый центр имеют не все антенны.

У антенн, имеющих фазовый центр и многолепестковую амплитудную ДН с чёткими нулями между ними, фаза поля в соседних лепестках отличается на р (180°). Взаимосвязь между амплитудной и фазовой диаграммами направленности одной и той же антенны иллюстрируется на рисунке 13.

Рисунок 13 - Амплитудная и фазовая ДН

Направление распространения ЭМВ и положение её фазового фронта в каждой точке пространства взаимно перпендикулярны.

Ширина ДН (главного лепестка) определяет степень концентра­ции излучаемой электромагнитной энергии.

Ширина ДН – это угол между двумя направлениями и в пределах главного ле­пест­ка, в которых амплитуда напряженности электромагнитного поля составляет уро­вень 0,707 от максимального значения (или уровень 0,5 от мак­симального по плот­нос­ти значения мощности).

Ширина ДН обозначается так: 2θ 0,5 - это ширина ДН по мощности на уровне 0,5; ­2θ 0,707 - ширина ДН по напряженности на уровне 0,707.

Индекс Е или Н, изображенный выше, означает ширину ДН в соответствующей плос­кости: , . Уровню 0,5 по мощности соответствует уровень 0,707 по нап­ря­женности поля или уровень - 3дБ в логарифмическом масштабе:

Ширина ДН одной и той же антенны, представленной по напря­женности поля, по мощности или в логарифмическом масштабе и изме­ренная на соответствующих уров­нях, будет одинаковой:

Экспериментально ширина ДН легко находится по графику ДН, изобра­женной в той или иной системе координат, например, как это показано на рисунке.

Уровень боковых лепестков ДН определяет степень побочного излучения антен­ной электромагнитного поля. Он влияет на скрыт­ность работы радиотехнического уст­ройства и на качество электро­магнитной совместимости с ближайшими радио­элект­ронными системами.

Относительный уровень бокового лепестка - это отношение амп­литуды напряженности поля в направлении максимума бокового ле­пестка к амплитуде напряженности поля в направлении максимума главного лепестка:

На практике этот уровень выражают в абсолютных единицах, либо в деци-белах. Наибольший ин­терес представляет уровень первого бокового лепест­ка. Иногда оперируют усред­нен­ным уровнем боковых лепестков.

4. Коэффициент направленного действия и коэффициент усиления переда­ю­щей антенны.

Коэффициент направленного действия количественно характери­зует направлен­ные свойства реальной антенн по сравнению с эталон­ной антенной, представляющей собой совершенно ненаправленный (изотропный) излучатель с ДН в виде сферы:

КНД - это число, показывающее во сколько раз плотность пото­ка мощности П(θ,φ) реальной (направленной) антенны больше плот­ности потока мощности

П Э (θ,φ) эта­лонной (ненаправленной) антенны для этого же направления и на том же уда­лении при условии, что мощности излучения антенн одинаковы:

С учетом (1) можем получить:

где D 0 - КНД в направлении максимального излучения.

На практике, говоря о КНД антенны, подразумевают значение, которое полностью опре­деляется диаграммой направленности антенны:



В инженерных расчетах пользуются приближенной эмпирической формулой, свя­зы­ва­ющей КНД с шириной ДН антенны в главных плос­костях:

Так как на практике затруднительно определить мощность из­лучения антенны (а тем более выполнить условие равенства мощнос­тей излучения эталонной и реаль­ной антенн), то вводят понятие ко­эффициента усиления антенны, который учитывает не только фокуси­рующие свойства антенны, но и ее возможности по преобразова­нию одного вида энергии в другой.

Это выражается в том, что в определении, аналогичному КНД, изменяется усло­вие, причем очевидно, что коэффициент полезного действия эталонной антенны ра­вен единице:

где P A - мощность, подведенная к антенне.

Тогда коэффициент направленного действия выражается через коэффициент направ­лен­ного действия следующим образом:

где η А - коэффициент полезного действия антенны.

На практике используют G 0 - коэффициент усиления антенны в направлении макси­маль­ного излучения.

5. Фазовая диаграмма направленности. Понятие о фазовом цент­ре антенны.

Фазовая диаграмма направленности - это зависимость фазы электромагнитного поля, излучаемого антенной от угловых коорди­нат. Так как в дальней зоне антенны век­то­ры поля Е и Н синфазны, то и фазовая ДН в одинаковой степени относится к элек­три­ческой и магнитной составляющей ЭМП, излучаемого антенной. Обознача­ется ФДН следующим образом:

Ψ = Ψ (θ,φ) при r = const.

Если Ψ (θ,φ) при r = const, то это означает, что антенна формирует фазовый фронт вол­­ны в виде сферы. Центр этой сфе­ры, в котором находится начало системы коор­ди­­нат называют фазовым центром антенны (ФЦА). Фазовый центр имеют не все антенны.

У антенн, имеющих фазовый центр и многолепестковую амплитудную ДН с чет­кими нулями меж­ду ними, фаза поля в соседних лепестках отличается на (180 0). Взаимосвязь между амплитудной и фазовой диаграммами направленности одной и той же антенны иллюстрируется следующим рисунком.

Так как направление распространения ЭМВ и положение ее фазо­вого фронта вза­им­но перпендикулярны в каждой точке пространства, то измеряя положение фа­зового фронта волны, можно косвенно опре­делить направление на источник излуче­ния (пеленгование фазовыми методами).