ВОЕННАЯ
АКАДЕМИЯ
СВЯЗИ
2 кафедра
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ
по учебной дисциплине
«Электроника, электротехника и схемотехника»
Тема № 4 Режим негармонических воздействий в
линейных электрических цепях
Занятие № 17 «Расчет временных характеристик
линейных электрических цепей»
Санкт-Петербург

УЧЕБНЫЕ ВОПРОСЫ:
1. Анализ временных характеристик линейных
электрических цепей.
2. Контроль усвоения изученного материала.
ЛИТЕРАТУРА:
Бабкова Л.А., Киселев О.Н. Методические рекомендации к
практическим занятиям и руководство к лабораторным работам по
дисциплине «Основы теории цепей»: Учеб.пособие.– СПб.: ВАС, 2011.
2. Улахович Д.А. Основы теории линейных электрических цепей:
Учеб.пособие. – СПб.: БХВ-Петербург, 2009.
1.

Задача 1

1. Анализ временных характеристик линейных
электрических цепей.
Задача 1
Найти импульсную и переходную характеристики электрического
фильтра нижних частот с максимально плоской АЧХ, если известна
передаточная функция:
1
H (p) 2
.
p 2 p 1

1
h (p) H (p).
p
h (p)
1
p(p 2 p 1)
2
.

2. Определим изображение импульсной характеристики:
g (p) H (p).
Таким образом изображение импульсной характеристики будет
иметь вид:
g (p)
1
p 2 p 1
2
.
Воспользовавшись таблицей соответствий определяем графическое
изображение переходной и импульсной характеристик:

Переходная характеристика
h (p)
1
p(p 2 2 p 1)
Рис1 . График f(t)
A
p(p 2 α1 p α2)

Импульсная характеристика

g (p)
1
p2 2 p 1
A
p 2 α1 p α2

Задача 2

Найти импульсную и переходную характеристики цепи, если известна
ее передаточная функция:
181,8 p
H (p) 2
p 1091 p 1,818 106
1. Определим изображение переходной характеристики
1
h(p) H (p)
p
2. Определим изображение импульсной характеристики:
g (p) H (p).
181,8 p
g (p) 2
p 1091 p 1,818 106

Переходная характеристика
181,1
h(p) 2
p 1091 p 1,818 106
A
2
p α1 p α2

Импульсная характеристика

181,8 p
g (p) 2
6
p 1091 p 1,818 10
Ap
p 2 α1 p α2

Задача 3 Определить переходные и импульсные характеристики цепи, состоящей из последовательно соединенных элементов R и C.

1. Найдем передаточные функции данной цепи для
представленных реакций:
uc (p)
Н1 (p)
;
u1 (p)
uR (p)
Н 2 (p)
.
u1 (p)

2. Найдем значение реакции на элементах С и R.

1
u1 (p)
1
u1 (p)
uc (p) i (p)
;
pC R 1 pC pRC 1
pC
u1 (p)
u1 (p) pRC
uR (p) i(p) R
R
.
1
pRC
1
R
pC

3.Передаточная функция в операторной форме:

1
H1 (p)
;
pRC 1
pRC
H 2 (p)
.
pRC 1
4. Найдем изображения переходных характеристик:
H1 (p)
1
hC (p)
p
p (pRC 1)
1
RC
1
p p
RC
H 2 (p)
RC
1
h R (p)
.
p
pRC 1 p 1
RC
;

4. Изображение импульсных характеристик находим по соотношению:

g (p) H (p)
1
1
g C (p) H1 (p)
RC ;
pRC 1 p 1
RC
1
pRC
1
g R (p) H 2 (p)
1
1 RC .
1
pRC 1
pRC 1
p
RC

Спасибо за внимание!

Допустим, что к цепи приложено ступенчатое воздействие, изображение которого является функция

Допустим, что к цепи приложено ступенчатое воздействие
изображение которого является функция A
p
х(t) A 1(t)
.
x (t)
0 при t 0;
x(t)
A при t 0.
A
t
0
Рис. 1. Ступенчатое воздействие
Тогда операторная передаточная функция будет иметь вид:
y (p) y (p)
y (p)
H (p)
p
.
A
x (p)
A
p
(10)
,

Осуществляя L-преобразование выражения (7), т.е. найдем L-изображение переходной характеристики. В силу свойства линейности

Осуществляя L-преобразование выражения (7), т.е. найдем Lизображение переходной характеристики. В силу свойства линейности
преобразования Лапласа получаем:
1
h (p) T (p).
p
(11)
Это выражение совпадает со вторым сомножителем правой части (10)
и, следовательно, между операторной передаточной функцией и
изображением переходной характеристики h (p) имеется следующая
взаимосвязь:
H (p) ph (p);
1
h (p) T (p).
p
(12)
(13)
Аналогично установим связь между H (p) и изображением
импульсной характеристики g (p) :
y (t)
g (p)
;

Если же на цепь подается импульсное воздействие, изображение которого равно, то операторная передаточная функция,

Если же на цепь подается импульсное воздействие х(t) Sи (t) ,
изображение которого х (p) равно
, то операторная передаточная
и
функция, соответствующая этому воздействию, имеет вид:
S
y (p) y (p)
H (p)
.
х (p)

(14)
Это выражение совпадает с функцией изображения импульсной
характеристики цепи. Следовательно,
g (p) H (p).
(15)

Рассмотрим связь между переходной и импульсной характеристиками
цепи. Не трудно заметить, что их изображения связаны соотношением
g (p) ph (p).
Проведя тождественное преобразование последнего равенства
(прибавив
h(0) h(0)) получим:
g (p) ph (p) h(0) h(0).
ph(p) h(p)
Поскольку
представляет собой изображение
произвольной переходной характеристики, то исходное равенство
можно представить в виде
g (p) h(0) L h / (t) .
Переходя в область оригиналов, получаем формулу, позволяющую
определить импульсную характеристику цепи по известной
ее
переходной характеристике, g (t) h(0) (t) h (t).
g
t
h
(t).
Если h(0) 0 , то
Обратное соотношение между указанными характеристиками имеет
t
вид:
h(t) g (t)dt.
0
(15)

3. Связь между временными и частотными
характеристиками цепи
e t
Для данной цепи определить операторную
передаточную функцию и найти выражения
для ее частотных характеристик
C
C
R
u1 (t) R
u2 (t)
и2 (p)
H (p)
.
e (p)
Рис. 5. Схема RC-цепи
Изображение реакции u2 (p) определим из системы узловых
уравнений, составленных для L-изображений узловых напряжений
u1 (p); u2 (p) :
(2 pC G)u1 (p) pCu2 (p) pCe(p);
pCu1 (p) (pC G)u2 (p) 0.

Отсюда

e (p) p 2
u2 (p)
;
2
G G
2
p 3p 2
C C
2
p
H (p) 2
2
p 3 p
где для упрощения записи введено обозначение
G
.
C
Для нахождения комплексной передаточной функции положим в
последнем выражении p j . Тогда
H (j) 2
.
2
() j3
2

АЧХ определяется модулем полученной функции, а ФЧХ находим
как аргумент
H (j).
H (j)
2
(2 2) 9 2 2
H j
3
() arctg 2
(2)
1
0
а
0
б
Рис. 6. Графики частотных характеристик RC-цепи: а – АЧХ, б – ФЧХ

ВЫВОДЫ:
1. Передаточная функция является L-изображением импульсной характеристики.
2. Передаточная
функция
является
дробно-рациональной
функцией
с
вещественными коэффициентами.
3. Полюсы устойчивой передаточной функции лежат в левой р-полуплоскости.
4. Степени полиномов числителей передаточной функции и квадрата АЧХ не
превышают степеней полиномов знаменателей; при невыполнении этого
свойства АЧХ на бесконечно больших частотах (ω → ∞) должна принимать
бесконечно большое значение, поскольку числитель в этом случае растёт
быстрее знаменателя.
5. Частотные характеристики цепи вычисляются по передаточной функции при
p = jω.
6. Квадрат АЧХ является чётной рациональной функцией переменной с
вещественными коэффициентами: H(jω) 2 = H(–jω) 2 .
7. По передаточной функции можно изобразить схему цепи.

.
Вопрос №1 а. Свободные колебания в
последовательном колебательном контуре.
В момент t=0 произошла коммутация,
т.е. ключ (Кл.) из положения 1 перешел в
положение 2.
Заряженная емкость оказалась
подключенной к RL-цепи.
Рассмотрим процессы происходящие в представленной цепи до коммутации
До коммутации емкость С была подключена
параллельно источнику постоянного напряжения Е,
(ключ (Кл.) находился в положении 1).
Напряжение на емкостях равнялось Е.
uC(+0) = uC(-0) = E;
iL(+0) = iL(-0) = 0.

Рассмотрим процессы происходящие в цепи после коммутации
Учитывая, что напряжение на емкости
скачком измениться не может, в соответствии с законом коммутации имеем:
uC(+0) = uC(-0) = E
Начальные условия НЕНУЛЕВЫЕ
Рассмотрим схему замещения цепи для момента времени
По закону Ома в операторной форме,
определим изображение реакции:
E
p
E
E
L
L
i (p)
2
,
2
1
R
1
p 2 p 0
pL R
p2 p
pC
L
LC
где:
0
R

2L
1
LC
-круговая частота собственных колебаний контура без потерь.

При анализе свободных и переходных колебаний в сложных цепях
изображение реакции y (p) представляет собой дробно-рациональную функцию
переменного p с вещественными коэффициентами, которую можно записать в
виде отношения двух полиномов:
M (p) bm p m bm 1 p m 1 bm 2 p m 2 ... b0
y (p)
N (p)
p n a n 1 p n 1 a n 2 p n 2 ... a 0
По основной теореме алгебры полином степени n может быть разложен на n
простых сомножителей, т.е.:
N(p) = (p-p1) (p-p2),…, (p-pn),
где p1, p2, p3,…,pn – корни полинома N(p) или полюсы функции y (p) .
Полином также можно представить в виде произведения m сомножителей:
M(p) = (p-p01) (p-p02) (p-p03),…,(p-p0m).
где p01, p02, p03,…,p0m - корни полинома М(p) или нули функции y (p) .
В силу вещественности коэффициентов ai и bi нули и полюсы изображения y (p)
могут быть вещественными и (или) комплексно-сопряженными.
Ясно, что дислокация полюсов y (p) определяет характер свободных и
переходных колебаний в анализируемой цепи.

Рассмотрим уравнение:
p 2 2 p 02
Оно имеет два корня, (полюсы изображения):
p1,2 2 02
В силу вещественности коэффициентов данного уравнения (δ, ω), полюсы
могут быть вещественные и комплексно-сопряженные.
Поэтому при анализе свободных колебаний в последовательном контуре
возможны три режима колебаний.

Корни уравнения комплексно-сопряженные:
p1,2 j 1
где:
1 02 2 .
такой характер корней имеет место при 0
или R 2
L
.
C
Оригинал для тока в
этом случае будет:
E t
i(t)
e sin 1t ,
1 L

Амплитуда колебания убывает во времени по экспоненциальному закону,
поэтому процесс называют затухающим. Скорость убывания амплитуды
свободных колебаний определяется значением коэффициента затухания δ.
2
Частоту: 1 02 2 0 1 называют частотой собственных
0
затухающих колебаний контура. Она, как видно из формулы, всегда меньше
частоты собственных незатухающих колебаний контура w0 и зависит не только от
значений индуктивности и емкости контура, но и от значения его резистивного
сопротивления.
Период затухающих колебаний:
T
2
2
0
2
.
Коэффициент затухания связан с добротностью контура соотношением:
где: Q
R 0
.
2 L 2Q
0 L
- добротность последовательного контура.
R
Таким образом, колебания в контуре убывают тем медленнее, чем выше его
добротность.

2. Критический режим гармонических колебаний.

p1 p2 ,
.e. 0 ; R 2
T
L
.
C
Режим колебания в контуре, соответствующий кратным корням
характеристического уравнения (полюсами изображения), может
рассматриваться как предельный случай колебательного режима,
когда частота собственных затухающих колебаний в контуре
нулю, а период колебаний становится
1 02 2 равна
бесконечно большим.

имеет вид:
E0 t
i(t)
te
L


Корни уравнения вещественные кратные:
p1,2 ,
где: 2 02 ; .
Первичные
параметры
контура
должны
удовлетворять неравенству:
L
R 2
.
C
Оригинал i(t), соответствующий данному расположению полюсов изображения,
имеет вид:
E
E
i (t)
L(p1 p2)
e p1t
L(p1 p2)
e p2t

Вопрос №1 б. Переходные колебания в последовательном
колебательном контуре.
Начальные условия НУЛЕВЫЕ
E
E
E
p
L
L
i(p)
2
;
2
1
R
1
p
2
p
0
pL R
p2 p C
pC
L
L
uC (p) i(p)
По таблице соответствий:
uC (t) E Ee (cos 1t sin 1t).
1
t
Напряжение на емкости контура
при t→∞ стремится к установившемуся значению, равному
напряжению источника. Следовательно, емкость при t→∞ заряжается до напряжения Е. Процесс
заряда при комплексно-сопряженных полюсах изображения
имеет колебательный характер.
1
LC
.
2
2
pC p(p 2 p 0)

Значение uC(t) в отдельные моменты времени превышают значения напряжения при большой добротности может почти вдвое превосходить ЭДС источника.
При t→∞ значения тока в контуре, напряжений на резистивном элементе и на
индуктивности контура стремятся к нулю, а напряжение на емкости - к ЭДС
источника. Следовательно, цепь переходит в режим постоянного тока. Процесс
установления колебаний происходит тем медленнее, чем выше добротность
контура. Для оценки времени установления можно воспользоваться полученной
ранее формулой:
ty
3 4, 6
,
что соответствует промежутку времени, по истечении которого амплитуда напряжения uC(t) отклоняется от установившегося значения не более чем на 0,05 или 0,01.
Вопрос №2 Свободные и переходные колебания в
параллельном колебательном контуре.
2.1 Свободные колебания в ПрКК
Начальные условия НЕНУЛЕВЫЕ
iL(+0) = iL(-0) = I0
uC(+0) = uC(-0) = u0

I0
Cu0
p
I0
u0 p
C ,
u (p)
2
2
1
p
2
p
0
pC G
pL
G
- коэффициент затухания контура;
2C
1
0
- частота собственных колебаний контура без потерь.
LC
где:
1. Режим затухающих гармонических колебаний.
Первичные параметре контура в этом случае должны удовлетворять неравенству:
G
2C
1
LC
Закон изменения напряжения на контуре в соответствии с таблицей соответствий определяется выражением:
I0
u
0
t
C
u (t) e u0 cos 1t
sin 1t
1

Анализ полученного решения показывает, что
колебания носят затухающий характер, причем
амплитуда
колебания
убывает
по
экспоненциальному закону. Чем больше
коэффициент затухания, тем быстрее затухают
колебания. Как и в последовательном контуре,
частота свободных колебаний:
1 0 1
0
2
0
2
2
всегда меньше частоты собственных незатухающих колебаний контура
2. Критический режим гармонических колебаний.
Такой характер корней имеет место при δ=ω0, когда между первичными параметрами контура выполняется соотношение:
G
2C
1
LC
I0
t
u (t) u0 u0 t e
C

3. Апериодический режим гармонических колебаний.
Этот случай возможен при условии δ=ω0, что соответствует следующему
соотношению между первичными параметрами контура:
G 2
C
.
L
I0
I0
u 0 p1
u0 p2
u (t) C
e p1t C
e p2t
p 2 p1
p 2 p1
Следует заметить, что при G=0 колебания в контуре носят незатухающий характер,
так как контур не рассеивает энергию.

2.2 Переходные колебания в ПрКК
Используя закон Ома в операторной форме, найдем изображения для всех
реакций:
I
p
I
I
C
u (p)
2 C
;
2
1
G
1
p 2 p 0
pC G
p2 p
LC
C
LC
I
G
C
iG (p) u (p)G 2
;
2
p 2 p 0
I
u (p)
LC
iL (p)
;
2
2
pL
p (p 2 p 0)
iC (p) u (p) pC
Ip
.
2
2
p 2 p 0

Закон изменения напряжения в параллельном
колебательном
контуре
аналогичен
закону
изменения тока в последовательном контуре.
Определим временную зависимость тока iC(t).
iC (t) Ie
p
(cos 1t sin 1t).
1
Так как при t=0 напряжение на емкости было равно нулю, то для этого момента
времени следует считать зажимы емкости замкнутыми накоротко. Следовательно,
в момент t=+0 весь ток I протекал через емкость (iC(+0))=I. При t→∞ цепь
переходят в режим постоянного тока, при котором u(∞)=0, iL(∞)=I, iG(∞)=iC(∞)=0.
Чем ниже добротность (больше затухание) контура, тем быстрее заканчивается
переходный процесс.

Приведенные в предыдущем параграфе выражения (5.17), (5.18) для коэффициентов усиления можно трактовать как передаточные функции линейного активного четырехполюсника. Характер этих функций определяется частотными свойствами параметров Y.

Записав в виде функций , приходим к понятию передаточная функция линейного активного четырехполюсника . Безразмерная в общем случае комплексная функция является исчерпывающей характеристикой четырехполюсника в частотной области. Она определяется в стационарном режиме при гармоническом возбуже-нии четырехполюсника.

Передаточную функцию часто удобно представлять в форме

Модуль иногда называют амплитудно-частотной характеристикой (АЧХ) четырехполюсника. Аргумент называют фазо-частотной характеристикой (ФЧХ) четырехполюсника.

Другой исчерпывающей характеристикой четырехполюсника является его импульсная характеристика , которая используется для описания цепи во временной области.

Для активных линейных цепей, как и для пассивных, под импульсной характеристикой цепи подразумевается отклик, реакция цепи на воздействие, имеющее вид единичного импульса (дельта-функции). Связь между нетрудно установить с помощью интеграла Фурье.

Если на входе четырехполюсника действует единичный импульс (дельтафункция) ЭДС со спектральной плотностью, равной единице для всех частот, то спектральная плотность выходного напряжения равна просто . Отклик на единичный импульс, т. е. импульсная характеристика цепи, легко определяется с помощью обратного преобразования Фурье, примененного к передаточной функции :

При этом необходимо учитывать, что перед правой частью этого равенства имеется множитель 1 с размерностью площади дельта-функции. В частном случае, когда имеется в виду б-импульс напряжения, эта размерность будет [вольт х секунда].

Соответственно функция является преобразованием Фурье импульсной характеристики:

В данном случае перед интегралом имеется в виду множитель единица с размерностью [вольт х секунда]^-1.

В дальнейшем импульсную характеристику будем обозначать функцией , под которой можно подразумевать не только напряжение, но и любую другую электрическую величину, являющуюся откликом на воздействие в виде дельта-функции.

Как и при представлении сигналов на плоскости комплексной частоты (см. § 2.14), в теории цепей широко распространено понятие передаточной функции рассматриваемой как преобразование Лапласа от функции 8

Временной характеристикой цепи называется функция вре­мени, значения которой численно определяются реакцией цепи на типовое воздействие. Реакция цепи на заданное типовое воздей­ствие зависит лишь от схемы цепи и параметров ее элементов и, следовательно, может служить ее характеристикой. Временные характеристики определяют для линейных цепей, не содержащих независимых источников энергии, и при нулевых начальных усло­виях. Временные характеристики зависят от вида заданного типо­вого воздействия. Всвязи с этим их делят на две группы: переход­ные и импульсные временные характеристики.

Переходная характеристика, или переходная функция, опреде­ляется реакцией цепи на воздействие единичной ступенчатой функ­ции. Она имеет несколько разновидностей (табл. 14.1).

Если воздействие задано в виде единичного скачка напряже­ния и реакцией является также напряжение, то переходная харак­теристика оказывается безразмерной, численно равной напряже­нию на выходе цепи и называется переходной функцией или ко­эффициентом передачи K U (t) по напряжению. Если же выходной величиной служит ток, то переходная характеристика имеет раз­мерность проводимости, численно равна этому току и называется переходной проводимостью Y(t). Аналогично при воздействии в виде тока и реакции в виде напряжения переходная функция имеет размерность сопротивления и называется переходным сопро­тивлением Z(t). Если же при этом выходной величиной является ток, то переходная характеристика безразмерна и называется переходной функцией или коэффициентом передачи K I (t) no току.

В общем случае переходную характеристику любого вида обо­значают через h(t). Переходные характеристики легко опреде­ляются расчетом реакции цепи на единичное ступенчатое воздей­ствие, т. е. расчетом переходного процесса при включении цепи на постоянное напряжение 1 В или на постоянный ток 1 А.

Пример 14.2.

Найти временные перехо дные характеристики простой rC-цепи (рис. 14.9, а), если во здействиями являются напряжения.


1. Для определения переходных характеристик рассчитаем переходный про­цесс при поступлении на вход цепи напряжения u(t) - 1 (t). Этому соответствует включение цепи в момент t=0 на источник постоянной э. д. с. е 0 =1 В (рис. 14.9,6). При этом:

а) ток в цепи определяется выражением

поэтому переходной проводимостью является

б) напряжение на емкости

поэтому переходная функция по напряжению

Импульсная характеристика, или импульсная переходная функ­ция, определяется реакцией цепи на воздействие δ(t)-функции. Как и переходная характеристика, она имеет несколько разновид­ностей, определяемых видом воздействия и реакции - напряже­нием или током. B общем случае импульсную характеристику обозначают через a(t).


Установим связь между импульсной характеристикой и пере­ходной характеристикой линейной цепи. Для этого определим сначала реакцию цепи на импульсное воздействие малой длитель­ности t И =Δt, представив его наложением двух ступенчатых функций:

B соответствии с принципом наложения реакция цепи на такое воздействие определяется с помощью переходных характеристик:

При малых Δt можно записать

где S и =U m Δƒ - площадь импульса.


При Δt 0 и U m полученное выражение описывает ре­акцию цепи на δ(t)-функцию, т. е, определяет импульсную харак­теристику цепи:

С учетом этого реакция линейной цепи на импульсное воздей­ствие малой длительности может быть найдена как произведение импульсной функции на площадь импульса:

Это равенство лежит в основе экспериментального определения импульсной функции. Оно тем точнее, чем меньше длительность импульса.

Таким образом, импульсная характеристика представляет про­изводную от переходной характеристики:

Здесь учтено, что h(t)δ(t)=h(0)δ(t), а умножение h(t) на l(t) эквивалентно указанию на то, что значение функции h(t) при t<0 равно нулю.

Интегрируя полученные выражения, легко убедиться, что

Равенства (14.17) и (14.19) являются следствием ра­венств (14.14) и (14.15). Так как импульсные харак­теристики имеют размерность соответствующей переходной харак­теристики, поделенной на время. Для расчета импульсной харак­теристики можно воспользоваться выражением (14.19), т. е. рас­считать ее с помощью переходной характеристики.

Пример 14.3.

Найти импульсные характеристики простой rC-цепи (см. рис. 14.9, а). Решение.

Используя выражения для переходных характеристик, полученные в при­мере 14.2, с помо щью выражения (14.19) находим импульсные характеристики;

Временные характеристики типовых звеньев приведены в табл. 14.2.



Расчет временных характеристик обычно производится в сле­дующем порядке:

определяются точки приложения внешнего воздействия и его вид (ток или напряжение), а также интересующая выходная ве­личина - реакция цепи (ток или напряжение на каком-то ее участке); нужная временная характеристика рассчитывается как реак­ция цепи на соответствующее типовое воздействие: 1(t) или δ(t),

1. ЗАДАНИЕ

Схема исследуемой цепи [рис. 1] №22, в соответствии с вариантом задания 22 - 13 - 5 - 4. Параметры элементов цепи: L = 2 мГн, R = 2кОм, C = 0,5 нФ.

Внешнее воздействие задано функцией: , где а вычисляется по формуле (1) и равно .

Рисунок 1. Электрическая схема заданной цепи

Необходимо определить:

а) выражение для первичных параметров заданного четырехполюсника в виде функции частоты;

б) комплексный коэффициент передачи по напряжению четырехполюсника в режиме холостого хода на зажимах ;

в) амплитудно-частотную и фазочастотную характеристики коэффициента передачи по напряжению;

г) операторный коэффициент передачи по напряжению четырехполюсника в режиме холостого хода на зажимах ;

д) переходную характеристику цепи ;

е) импульсную характеристику цепи ;

ж) отклик цепи на заданное входное воздействие при отключенной нагрузке.

2. РАСЧЕТНАЯ ЧАСТЬ

.1 Определение первичных параметров четырехполюсника

Для определения Z - параметров четырехполюсника составим уравнения электрического равновесия цепи по методу контурных токов используя комплексную схему замещения цепи [рис. 2]:


Рисунок 2. Комплексная схема замещения заданной электрической цепи

Выбирая направление обхода контуров, как указано на [рис. 2], и учитывая, что

запишем контурные уравнения цепи:


Подставим в полученные уравнения значения и :

(2)

Полученные уравнения (2) содержат только токи и напряжения на входных и выходных зажимах четырехполюсника и могут быть преобразованы к стандартному виду записи основных уравнений четырехполюсника в форме Z:

(3)

Преобразуя уравнения (2) к виду (3), получим:


Сравнивая полученные уравнения с уравнениями (3), получаем:

четырехполюсник напряжение холостой амплитудный


2.2 Определение коэффициента передачи по напряжению в режиме холостого хода на выходе

Комплексный коэффициент передачи по напряжению от зажимов к зажимам в режиме холостого хода () на выходе найдем, используя полученные в пункте 2.1 выражения для первичных параметров:

2.3 Определение амплитудно-частотной и фазочастотной характеристик коэффициента передачи по напряжению

Рассмотрим полученное выражение для как отношение двух комплексных чисел, находим выражение для АЧХ и ФЧХ.

АЧХ будет иметь вид:


Из формулы (4) следует, что ФЧХ будет иметь вид:


Где, рад/с находится из уравнения

Графики АЧХ и ФЧХ приведены на следующей странице. [рис.3, рис.4]

Рисунок 3 . Амплитудно-частотная характеристика

Рисунок 4. Фазочастотная характеристика

Предельные значения и при для контроля вычислений полезно определить, не прибегая к расчетным формулам:

· учитывая, что сопротивление индуктивности при постоянном токе равно нулю, а сопротивление емкости бесконечно велико, в схеме [см. рис1] можно разорвать ветвь, содержащую емкость, и заменить индуктивность перемычкой. В полученной схеме и , т.к входное напряжение совпадает по фазе с напряжением на зажимах ;

· на бесконечно большой частоте ветвь, содержащую индуктивность, можно разорвать, т.к. сопротивление индуктивности стремится к бесконечности. Не смотря на то, что сопротивление емкости стремится к нулю, ее нельзя заменить перемычкой, так как напряжение на емкости является откликом. В полученной схеме [см. рис.5], при , , входной ток опережает по фазе входное напряжение на , а напряжение выходе совпадает по фазе с напряжением на входе, поэтому .

Рисунок 5. Электрическая схема заданной цепи при .

2.4 Определение операторный коэффициент передачи по напряжению четырехполюсника в режиме холостого хода на зажимах

Операторная схема замещения цепи по внешнему виду не отличается от комплексной схемы замещения [рис.2], так как анализ электрической цепи проводится при нулевых начальных условиях. В этом случае для получения операторного коэффициента передачи по напряжению достаточно в выражении для комплексного коэффициента передачи заменить оператором :

Преобразуем последнее выражение так, чтобы коэффициенты при старших степенях в числителе и знаменателе были равны единице:


Функция имеет два комплексно-сопряженных полюса: ; и один вещественный нуль: .

Рисунок 6. Полюсно-нулевая диаграмма функции

Полюсно-нулевая диаграмма функции приведена на рис.6. Переходные процессы в цепи имеют колебательный затухающий характер.

2.5 Определение переходной и импульсной характеристик цепи

Операторное выражение позволяет получить изображения переходной и импульсной характеристик. Переходную характеристику удобно определять, используя связь между изображением по Лапласу переходной характеристики и операторным коэффициентом передачи:

(5)

Импульсная характеристика цепи может быть получена из соотношений:

(6)

(7)

Используя формулы (5) и (6), запишем выражения изображений импульсной и переходной характеристик:


Преобразуем изображения переходной и импульсной характеристик к виду, удобному для определения оригиналов временных характеристик с помощью таблиц преобразований Лапласа:

(8)

(9)

Таким образом, все изображения сведены к следующим операторным функциям, оригиналы которых приведены в таблицах преобразований Лапласа:

(12)

Учитывая, что для данного рассматриваемого случая , , , найдем значения постоянных для выражения (11) и значения постоянных для выражения (12).

Для выражения (11):


И для выражения (12):


Подставляя полученные значения в выражения (11) и (12), получим:

После преобразований получаем окончательные выражения для временных характеристик:

Переходной процесс в данной цепи заканчивается после коммутации за время , где - определяется как обратная величина к абсолютной минимальной величине вещественной части полюса . Так как , то время затухания равно (6 - 10) мкс. Соответственно, выбираем интервал расчета численных значений временных характеристик . Графики переходной и импульсной характеристик приведены на рис.7 и 8.

Для качественного объяснения вида переходной и импульсной характеристик цепи к входным зажимам независимый источник напряжения . Переходная характеристика цепи численно совпадает с напряжением на выходных зажимах при воздействии на цепь единичного скачка напряжения при нулевых начальных условиях. В первоначальный момент времени после коммутации напряжение на емкости равно нулю, так как по законам коммутации при конечном значении амплитуды скачка напряжение на емкости скачком измениться не может. Следовательно, , то есть . При напряжение на входе можно считать постоянным и равным 1В, то есть . В цепи, соответственно, могут протекать только постоянные токи, поэтому емкость можно заменить разрывом, а индуктивность перемычкой, следовательно в преобразованной таким образом цепи , то есть . Переход от начального состояния к установившемуся происходит в колебательном режиме, что объясняется процессом периодического обмена энергией между индуктивностью и емкостью. Затухание колебаний происходит из-за потерь энергии на сопротивлении R.

Рисунок 7. Переходная характеристика .

Рисунок 8. Импульсная характеристика .

Импульсная характеристика цепи численно совпадает с выходным напряжением при подаче на вход единичного импульса напряжения . В течении действия единичного импульса емкость заряжается до своего максимального значения, а напряжение на емкости становится равным

.

При источник напряжения может быть заменен короткозамкнутой перемычкой, а в цепи возникает затухающий колебательный процесс обмена энергией между индуктивностью и емкостью. На начальном этапе емкость разряжается, ток емкости плавно уменьшается до 0, а ток индуктивности растет до своего максимального значения при . Затем ток индуктивности, плавно уменьшаясь, перезаряжает емкость в противоположном направлении и т.д. При вследствие рассеяния энергии в сопротивлении все токи и напряжения цепи стремятся к нулю. Таким образом, затухающий с течением времени колебательный характер напряжения на емкости и объясняет вид импульсной характеристики, причем и .

Корректность расчета импульсной характеристики подтверждается качественно тем, что график на рис.8 переходит через 0 в те моменты времени, когда график на рис.7 имеет локальные экстремумы, а максимумы совпадают по времени с точками перегиба графика . А также корректность расчетов подтверждается тем, что графики и , в соответствии с формулой (7), совпадают. Для проверки правильности нахождения переходной характеристики цепи найдем эту характеристику при воздействии на цепь единичного скачка напряжения классическим методом:

Найдем независимые начальные условия ():


Найдем зависимые начальные условия ():

Для этого обратимся к рис.9, на котором изображена схема цепи в момент времени , тогда получим:


Рисунок 9. Схема цепи в момент времени

Найдем принужденную составляющую отклика:

Для этого обратимся к рис.10, на котором изображена схема цепи при после коммутации. Тогда получаем, что

Рисунок 10. Схема цепи при .

Составим дифференциальное уравнение:

Для этого сначала запишем уравнение баланса токов в узле по первому закону Кирхгофа и запишем некоторые уравнения на основании второго законов Кирхгоффа:

Используя компонентные уравнения преобразуем первое уравнение:


Выразим все неизвестные напряжения через :


Теперь дифференцируя и преобразуя получаем дифференциальное уравнение второго порядка:


Подставим известные константы и получим:


5. Запишем характеристическое уравнение и найдем его корни:
к нулю. Постоянная времени и квазипериод колебания временных характеристик совпадают с результатами, полученными из анализа операторного коэффициента передачи; АЧХ рассматриваемой цепи близка к АЧХ идеального фильтра нижних частот с граничной частотой .

Список использованной литературы

1. Попов В.П. Основы теории цепей: Учебник для вузов - 4-ое изд., испр. - М.: Высш. шк., 2003. - 575с.: ил.

Корн Г., Корн Т., Справочник по математике для инженеров и учащихся вузов. М.: Наука, 1973, 832 с.